Barbara Brannetti
University of Rome Tor Vergata
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Brannetti.
Nucleic Acids Research | 2003
Pål Puntervoll; Rune Linding; Christine Gemünd; Sophie Chabanis-Davidson; Morten Mattingsdal; Scott Cameron; David M. A. Martin; Gabriele Ausiello; Barbara Brannetti; Anna Costantini; Fabrizio Ferrè; Vincenza Maselli; Allegra Via; Gianni Cesareni; Francesca Diella; Giulio Superti-Furga; Lucjan S. Wyrwicz; Chenna Ramu; Caroline McGuigan; Rambabu Gudavalli; Ivica Letunic; Peer Bork; Leszek Rychlewski; Bernhard Kuster; Manuela Helmer-Citterich; William N. Hunter; Rein Aasland; Toby J. Gibson
Multidomain proteins predominate in eukaryotic proteomes. Individual functions assigned to different sequence segments combine to create a complex function for the whole protein. While on-line resources are available for revealing globular domains in sequences, there has hitherto been no comprehensive collection of small functional sites/motifs comparable to the globular domain resources, yet these are as important for the function of multidomain proteins. Short linear peptide motifs are used for cell compartment targeting, protein-protein interaction, regulation by phosphorylation, acetylation, glycosylation and a host of other post-translational modifications. ELM, the Eukaryotic Linear Motif server at http://elm.eu.org/, is a new bioinformatics resource for investigating candidate short non-globular functional motifs in eukaryotic proteins, aiming to fill the void in bioinformatics tools. Sequence comparisons with short motifs are difficult to evaluate because the usual significance assessments are inappropriate. Therefore the server is implemented with several logical filters to eliminate false positives. Current filters are for cell compartment, globular domain clash and taxonomic range. In favourable cases, the filters can reduce the number of retained matches by an order of magnitude or more.
Cellular and Molecular Life Sciences | 2000
Allegra Via; Fabrizio Ferrè; Barbara Brannetti; Manuela Helmer-Citterich
Abstract. Many methods have been developed to analyse protein sequences and structures, although less work has been undertaken describing and comparing protein surfaces. Evolution can lead sequences to diverge or structures to change topology; nevertheless, surface determinants that are essential to protein function itself may be mantained. Moreover, different molecules could converge to similar functions by gaining specific surface determinants. In such cases, sequence or structure comparisons are likely to be inadequate in describing or identifying protein functions and evolutionary relationships among proteins. Surface analysis can identify function determinants that are independent of sequence or secondary structure and can therefore be a powerful tool to highlight cases of possible convergent or divergent evolution. This kind of approach can be useful for a better understanding of protein molecular and biochemical mechanisms of catalysis or interaction with a ligand, which are usually surface dependent. Protein surface comparison, when compared to sequence or structure comparison methods, is a hard computational challenge and evaluated methods allowing the comparison of protein surfaces are difficult to find. In this review, we will survey the current knowledge about protein surface similarity and the techniques to detect it.
Nucleic Acids Research | 2003
Barbara Brannetti; Manuela Helmer-Citterich
iSPOT (http://cbm.bio.uniroma2.it/ispot) is a web tool developed to infer the recognition specificity of protein module families; it is based on the SPOT procedure that utilizes information from position-specific contacts, derived from the available domain/ligand complexes of known structure, and experimental interaction data to build a database of residue-residue contact frequencies. iSPOT is available to infer the interaction specificity of PDZ, SH3 and WW domains. For each family of protein domains, iSPOT evaluates the probability of interaction between a query domain of the specified families and an input protein/peptide sequence and makes it possible to search for potential binding partners of a given domain within the SWISS-PROT database. The experimentally derived interaction data utilized to build the PDZ, SH3 and WW databases of residue-residue contact frequencies are also accessible. Here we describe the application to the WW family of protein modules.
Comparative and Functional Genomics | 2001
Barbara Brannetti; Andreas Zanzoni; Luisa Montecchi-Palazzi; Gianni Cesareni; Manuela Helmer-Citterich
Methods that aim at predicting interaction partners are very likely to play an important role in the interpretation of genomic information. iSPOT (iSpecificity Prediction Of Target) is a web tool (accessible at http://cbm.bio.uniroma2.it/iSPOT) developed for the prediction of protein-protein interaction mediated by families of peptide recognition modules. iSPOT accesses a database of position specific residue-residue interaction frequencies for members of the SH3 and PDZ protein domain families. The software utilises this database to provide a score for any potential domain peptide interaction. iSPOT: 1. evaluates the likelihood of the interaction between any of the peptides contained in an input protein and a list of domains of the two different families; 2. searches in the SWISS-PROT database for potential partners of a query domain; and 3. has access to a repository of all the domain/target peptide interaction data.
Comparative and Functional Genomics | 2003
Fabrizio Ferrè; Allegra Via; Gabriele Ausiello; Barbara Brannetti; Andreas Zanzoni; Manuela Helmer-Citterich
Relatively few protein structures are known, compared to the enormous amount of sequence data produced in the sequencing of different genomes, and relatively few protein complexes are deposited in the PDB with respect to the great amount of interaction data coming from high-throughput experiments (two-hybrid or affinity purification of protein complexes and mass spectrometry). Nevertheless, we can rely on computational techniques for the extraction of high-quality and information-rich data from the known structures and for their spreading in the protein sequence space. We describe here the ongoing research projects in our group: we analyse the protein complexes stored in the PDB and, for each complex involving one domain belonging to a family of interaction domains for which some interaction data are available, we can calculate its probability of interaction with any protein sequence. We analyse the structures of proteins encoding a function specified in a PROSITE pattern, which exhibits relatively low selectivity and specificity, and build extended patterns. To this aim, we consider residues that are well-conserved in the structure, even if their conservation cannot easily be recognized in the sequence alignment of the proteins holding the function. We also analyse protein surface regions and, through the annotation of the solvent-exposed residues, we annotate protein surface patches via a structural comparison performed with stringent parameters and independently of the residue order in the sequence. Local surface comparison may also help in identifying new sequence patterns, which could not be highlighted with other sequence-based methods.
Journal of Molecular Biology | 2000
Barbara Brannetti; Allegra Via; Gianluca Cestra; Gianni Cesareni; Manuela Helmer Citterich
Journal of Molecular Biology | 2000
Allegra Via; Fabrizio Ferrè; Barbara Brannetti; Alfonso Valencia; Manuela Helmer-Citterich
Journal of Biological Chemistry | 2001
P Vaccaro; Barbara Brannetti; L Montecchi-Palazzi; S Philipp; M Helmer Citterich; Gianni Cesareni; Luciana Dente
Journal of Molecular Biology | 2002
Anastasia S. Politou; Roberta Spadaccini; Catherine Joseph; Barbara Brannetti; Remo Guerrini; Manuela Helmer-Citterich; Severo Salvadori; Piero A. Temussi; Annalisa Pastore
Comparative and Functional Genomics | 2001
Barbara Brannetti; Andreas Zanzoni; Luisa Montecchi-Palazzi; Gianni Cesareni; Manuela Helmer-Citterich