Barbara Brodsky
Tufts University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Brodsky.
Structure | 1995
Jordi Bella; Barbara Brodsky; Helen M. Berman
BACKGROUND The collagen triple helix is a unique protein motif defined by the supercoiling of three polypeptide chains in a polyproline II conformation. It is a major domain of all collagen proteins and is also reported to exist in proteins with host defense function and in several membrane proteins. The triple-helical domain has distinctive properties. Collagen requires a high proportion of the post-translationally modified imino acid 4-hydroxyproline and water to stabilize its conformation and assembly. The crystal structure of a collagen-like peptide determined to 1.85 Angstrum showed that these two features may be related. RESULTS A detailed analysis of the hydration structure of the collagen-like peptide is presented. The water molecules around the carbonyl and hydroxyprolyl groups show distinctive geometries. There are repetitive patterns of water bridges that link oxygen atoms within a single peptide chain, between different chains and between different triple helices. Overall, the water molecules are organized in a semi-clathrate-like structure that surrounds and interconnects triple helices in the crystal lattice. Hydroxyprolyl groups play a crucial role in the assembly. CONCLUSIONS The roles of hydroxyproline and hydration are strongly interrelated in the structure of the collagen triple helix. The specific, repetitive water bridges observed in this structure buttress the triple-helical conformation. The extensively ordered hydration structure offers a good model for the interpretation of the experimental results on collagen stability and assembly.
Nature Structural & Molecular Biology | 1999
Rachel Z. Kramer; Jordi Bella; Patricia Mayville; Barbara Brodsky; Helen M. Berman
The 2 Å crystal structure reported here of the collagen-like model peptide, T3-785, provides the first visualization of how the sequence of collagen defines distinctive local conformational variations in triple-helical structure.
Matrix Biology | 1997
Barbara Brodsky; John A. M. Ramshaw
Recent advances, principally through the study of peptide models, have led to an enhanced understanding of the structure and function of the collagen triple helix. In particular, the first crystal structure has clearly shown the highly ordered hydration network critical for stabilizing both the molecular conformation and the interactions between triple helices. The sequence dependent nature of the conformational features is also under active investigation by NMR and other techniques. The triple-helix motif has now been identified in proteins other than collagens, and it has been established as being important in many specific biological interactions as well as being a structural element. The nature of recognition and the degree of specificity for interactions involving triple helices may differ from globular proteins. Triple-helix binding domains consist of linear sequences along the helix, making them amenable to characterization by simple model peptides. The application of structural techniques to such model peptides can serve to clarify the interactions involved in triple-helix recognition and binding and can help explain the varying impact of different structural alterations found in mutant collagens in diseased states.
Advances in Protein Chemistry | 2005
Barbara Brodsky; Anton V. Persikov
The molecular conformation of the collagen triple helix confers strict amino acid sequence constraints, requiring a (Gly-X-Y)(n) repeating pattern and a high content of imino acids. The increasing family of collagens and proteins with collagenous domains shows the collagen triple helix to be a basic motif adaptable to a range of proteins and functions. Its rodlike domain has the potential for various modes of self-association and the capacity to bind receptors, other proteins, GAGs, and nucleic acids. High-resolution crystal structures obtained for collagen model peptides confirm the supercoiled triple helix conformation, and provide new information on hydrogen bonding patterns, hydration, sidechain interactions, and ligand binding. For several peptides, the helix twist was found to be sequence dependent, and such variation in helix twist may serve as recognition features or to orient the triple helix for binding. Mutations in the collagen triple-helix domain lead to a variety of human disorders. The most common mutations are single-base substitutions that lead to the replacement of one Gly residue, breaking the Gly-X-Y repeating pattern. A single Gly substitution destabilizes the triple helix through a local disruption in hydrogen bonding and produces a discontinuity in the register of the helix. Molecular information about the collagen triple helix and the effect of mutations will lead to a better understanding of function and pathology.
Journal of Biological Chemistry | 2005
Anton V. Persikov; John A. M. Ramshaw; Barbara Brodsky
An algorithm was derived to relate the amino acid sequence of a collagen triple helix to its thermal stability. This calculation is based on the triple helical stabilization propensities of individual residues and their intermolecular and intramolecular interactions, as quantitated by melting temperature values of host-guest peptides. Experimental melting temperature values of a number of triple helical peptides of varying length and sequence were successfully predicted by this algorithm. However, predicted Tm values are significantly higher than experimental values when there are strings of oppositely charged residues or concentrations of like charges near the terminus. Application of the algorithm to collagen sequences highlights regions of unusually high or low stability, and these regions often correlate with biologically significant features. The prediction of stability from sequence indicates an understanding of the major forces maintaining this protein motif. The use of highly favorable KGE and KGD sequences is seen to complement the stabilizing effects of imino acids in modulating stability and may become dominant in the collagenous domains of bacterial proteins that lack hydroxyproline. The effect of single amino acid mutations in the X and Y positions can be evaluated with this algorithm. An interactive collagen stability calculator based on this algorithm is available online.
Journal of Molecular Biology | 1988
Shizuko Tanaka; Gad Avigad; Barbara Brodsky; Eric F. Eikenberry
Exposure of rat tail tendon to a reducing sugar results in covalent attachment of the sugar to collagen, a process termed glycation, and leads to the formation of stable intermolecular cross-links. We have used X-ray diffraction to study the changes in the crystalline unit cell of rat tail tendon collagen brought about by glycation. Ribose was selected as a model compound for most of the study because its reaction with proteins is faster than that of glucose, and therefore more convenient for laboratory studies, but glucose and glyceraldehyde were used as well. A kinetic model describing the process of glycation by ribose and subsequent cross-link formation has been developed. Glycation resulted in an expansion by more than 12% of the unit cell that describes the three-dimensional structure of rat tail tendon collagen. The expansion was in a direction perpendicular to the axes of the rod-shaped molecules, indicating that the intermolecular spacing of the collagen increased. Thus, the structure of collagen in rat tail tendon is significantly altered by glycation in vitro. The expansion was not isotropic, but was directed parallel to the (120) planes, one of the three major planes of the quasi-hexagonal structure that is densely populated by collagen molecules. It is hypothesized that this expansion is brought about by the formation of one, or at most a few, specific intermolecular cross-links in the overlap zone that act to push the molecules apart. It is likely that similar structural changes in collagenous tissues are caused by glycation in vivo during the natural course of aging, and that these changes are accelerated in chronic hyperglycemia such as that associated with diabetes. Analysis of the structure of glycated rat tail tendon potentially can give us new insight into the detailed molecular structure of collagen.
Biopolymers | 2008
Barbara Brodsky; Geetha Thiagarajan; Balaraman Madhan; Karunakar Kar
Peptides have been an integral part of the collagen triple-helix structure story, and have continued to serve as useful models for biophysical studies and for establishing biologically important sequence-structure-function relationships. High resolution structures of triple-helical peptides have confirmed the basic Ramachandran triple-helix model and provided new insights into the hydration, hydrogen bonding, and sequence dependent helical parameters in collagen. The dependence of collagen triple-helix stability on the residues in its (Gly-X-Y)(n) repeating sequence has been investigated by measuring melting temperatures of host-guest peptides and an on-line collagen stability calculator is now available. Although the presence of Gly as every third residue is essential for an undistorted structure, interruptions in the repeating (Gly-X-Y)(n) amino acid sequence pattern are found in the triple-helical domains of all nonfibrillar collagens, and are likely to play a role in collagen binding and degradation. Peptide models indicate that small interruptions can be incorporated into a rod-like triple-helix with a highly localized effect, which perturbs hydrogen bonds and places the standard triple-helices on both ends out of register. In contrast to natural interruptions, missense mutations which replace one Gly in a triple-helix domain by a larger residue have pathological consequences, and studies on peptides containing such Gly substitutions clarify their effect on conformation, stability, and folding. Recent studies suggest peptides may also be useful in defining the basic principles of collagen self-association to the supramolecular structures found in tissues.
Current Opinion in Structural Biology | 1999
Jean Baum; Barbara Brodsky
The misfolding of the triple helix has been shown to play a critical role in collagen diseases. Normal and mutated collagen triple helices can be modeled by short, synthetic peptides of varying design. NMR spectroscopy and circular dichroism studies on the assembly of these peptide models have recently been used to isolate specific steps in the folding pathway and have provided information on the alterations resulting from mutations.
Methods in Enzymology | 1982
Barbara Brodsky; Eric F. Eikenberry
Publisher Summary Collagen fibers can be studied in tissues or as fibers reprecipitated from solutions of purified collagen. The biochemical data establishing differences in the collagenous and noncollagenous components of various connective tissues has clarified the need to compare structures of fibrils in different tissues and of fibers reprecipitated from different genetic types of collagen. Such investigations have been carried out in this chapter using electron microscopy and X-ray diffraction on both native tissues and reprecipitated fibers. From electron microscopy, one gets an image of the fibril showing the gap: overlap regions (by negative staining) or the distribution of charged residues (by positive staining). In examination it is found that the SLS banding patterns of different genetic types of collagen can be distinguished, but no differences can be seen in the native-type fibrils reprecipitated from purified type I, type II, or type III collagens. In addition, X-Ray diffraction studies provide information on the axial fibril structure and the lateral packing of molecules in the fibril. Examination of various tissues and reprecipitated fibers has indicated that the X-ray patterns vary from the well-studied one of rat tail tendon.
Journal of Biological Chemistry | 2007
Angela Mohs; Teresita Silva; Takeshi Yoshida; Ravish Amin; Slawomir Lukomski; Masayori Inouye; Barbara Brodsky
The Streptococcus pyogenes cell-surface protein Scl2 contains a globular N-terminal domain and a collagen-like domain, (Gly-Xaa-X′aa)79, which forms a triple helix with a thermal stability close to that seen for mammalian collagens. Hyp is a major contributor to triple-helix stability in animal collagens, but is not present in bacteria, which lack prolyl hydroxylase. To explore the basis of bacterial collagen triple-helix stability in the absence of Hyp, biophysical studies were carried out on recombinant Scl2 protein, the isolated collagen-like domain from Scl2, and a set of peptides modeling the Scl2 highly charged repetitive (Gly-Xaa-X′aa)n sequences. At pH 7, CD spectroscopy, dynamic light scattering, and differential scanning calorimetry of the Scl2 protein all showed a very sharp thermal transition near 36 °C, indicating a highly cooperative unfolding of both the globular and triple-helix domains. The collagen-like domain isolated by trypsin digestion showed a sharp transition at the same temperature, with an enthalpy of 12.5 kJ/mol of tripeptide. At low pH, Scl2 and its isolated collagen-like domain showed substantial destabilization from the neutral pH value, with two thermal transitions at 24 and 27 °C. A similar destabilization at low pH was seen for Scl2 charged model peptides, and the degree of destabilization was consistent with the strong pH dependence arising from the GKD tripeptide unit. The Scl2 protein contained twice as much charge as human fibril-forming collagens, and the degree of electrostatic stabilization observed for Scl2 was similar to the contribution Hyp makes to the stability of mammalian collagens. The high enthalpic contribution to the stability of the Scl2 collagenous domain supports the presence of a hydration network in the absence of Hyp.
Collaboration
Dive into the Barbara Brodsky's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs