Zhuoxin Yu
University of Medicine and Dentistry of New Jersey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhuoxin Yu.
Protein Science | 2009
Ayumi Yoshizumi; Zhuoxin Yu; Teresita Silva; Geetha Thiagarajan; John A. M. Ramshaw; Masayori Inouye; Barbara Brodsky
A number of bacterial collagen‐like proteins with Gly as every third residue and a high Pro content have been observed to form stable triple‐helical structures despite the absence of hydroxyproline (Hyp). Here, the high yield cold‐shock expression system is used to obtain purified recombinant collagen‐like protein (V‐CL) from Streptococcus pyogenes containing an N‐terminal globular domain V followed by the collagen triple‐helix domain CL and the modified construct with two tandem collagen domains V‐CL‐CL. Both constructs and their isolated collagenous domains form stable triple‐helices characterized by very sharp thermal transitions at 35–37°C and by high values of calorimetric enthalpy. Procedures for the formation of collagen SLS crystallites lead to parallel arrays of in register V‐CL‐CL molecules, as well as centrosymmetric arrays of dimers joined at their globular domains. At neutral pH and high concentrations, the bacterial constructs all show a tendency towards aggregation. The isolated collagen domains, CL and CL‐CL, form units of diameter 4–5 nm which bundle together and twist to make larger fibrillar structures. Thus, although this S. pyogenes collagen‐like protein is a cell surface protein with no indication of participation in higher order structure, the triple‐helix domain has the potential of forming fibrillar structures even in the absence of hydroxyproline. The formation of fibrils suggests bacterial collagen proteins may be useful for biomaterials and tissue engineering applications.
Journal of Structural Biology | 2014
Zhuoxin Yu; Bo An; John A. M. Ramshaw; Barbara Brodsky
A large number of collagen-like proteins have been identified in bacteria during the past 10years, principally from analysis of genome databases. These bacterial collagens share the distinctive Gly-Xaa-Yaa repeating amino acid sequence of animal collagens which underlies their unique triple-helical structure. A number of the bacterial collagens have been expressed in Escherichia coli, and they all adopt a triple-helix conformation. Unlike animal collagens, these bacterial proteins do not contain the post-translationally modified amino acid, hydroxyproline, which is known to stabilize the triple-helix structure and may promote self-assembly. Despite the absence of collagen hydroxylation, the triple-helix structures of the bacterial collagens studied exhibit a high thermal stability of 35-39°C, close to that seen for mammalian collagens. These bacterial collagens are readily produced in large quantities by recombinant methods, either in the original amino acid sequence or in genetically manipulated sequences. This new family of recombinant, easy to modify collagens could provide a novel system for investigating structural and functional motifs in animal collagens and could also form the basis of new biomedical materials with designed structural properties and functions.
Journal of Biological Chemistry | 2012
Zhuoxin Yu; Robert Visse; Masayori Inouye; Hideaki Nagase; Barbara Brodsky
Background: Structural requirements of triple-helical collagen for collagenolysis are not fully understood. Results: Recombinant bacterial collagens with human collagen III sequence insertions defined the minimum sequence for cleavage by human collagenases. Conclusion: Susceptibility of bacterial-human collagen chimeras to collagenases mimicked that of human collagen III. Significance: This recombinant system is useful to investigate biological functions of collagen segments in a triple-helical context. Degradation of fibrillar collagens is important in many physiological and pathological events. These collagens are resistant to most proteases due to the tightly packed triple-helical structure, but are readily cleaved at a specific site by collagenases, selected members of the matrix metalloproteinases (MMPs). To investigate the structural requirements for collagenolysis, varying numbers of GXY triplets from human type III collagen around the collagenase cleavage site were inserted between two triple helix domains of the Scl2 bacterial collagen protein. The original bacterial CL domain was not cleaved by MMP-1 (collagenase 1) or MMP-13 (collagenase 3). The minimum type III sequence necessary for cleavage by the two collagenases was 5 GXY triplets, including 4 residues before and 11 residues after the cleavage site (P4-P11′). Cleavage of these chimeric substrates was not achieved by the catalytic domain of MMP-1 or MMP-13, nor by full-length MMP-3. Kinetic analysis of the chimeras indicated that the rate of cleavage by MMP-1 of the chimera containing six triplets (P7-P11′) of collagen III was similar to that of native collagen III. The collagenase-susceptible chimeras were cleaved very slowly by trypsin, a property also seen for native collagen III, supporting a local structural relaxation of the triple helix near the collagenase cleavage site. The recombinant bacterial-human collagen system characterized here is a good model to investigate the specificity and mechanism of action of collagenases.
Biomaterials | 2010
Yong Y. Peng; Ayumi Yoshizumi; Stephen J. Danon; Veronica Glattauer; Olga Prokopenko; Oleg Mirochnitchenko; Zhuoxin Yu; Masayori Inouye; Jerome A. Werkmeister; Barbara Brodsky; John A. M. Ramshaw
A range of bacteria have been shown to contain collagen-like sequences that form triple-helical structures. Some of these proteins have been shown to form triple-helical motifs that are stable around body temperature without the inclusion of hydroxyproline or other secondary modifications to the protein sequence. This makes these collagen-like proteins particularly suitable for recombinant production as only a single gene product and no additional enzyme needs to be expressed. In the present study, we have examined the cytotoxicity and immunogenicity of the collagen-like domain from Streptococcus pyogenes Scl2 protein. These data show that the purified, recombinant collagen-like protein is not cytotoxic to fibroblasts and does not elicit an immune response in SJL/J and Arc mice. The freeze dried protein can be stabilised by glutaraldehyde cross-linking giving a material that is stable at >37 degrees C and which supports cell attachment while not causing loss of viability. These data suggest that bacterial collagen-like proteins, which can be modified to include specific functional domains, could be a useful material for medical applications and as a scaffold for tissue engineering.
Biomacromolecules | 2010
Chunying Xu; Zhuoxin Yu; Masayori Inouye; Barbara Brodsky; Oleg Mirochnitchenko
The presence of the (Gly-Xaa-Yaa)(n) open reading frames in different bacteria predicts the existence of an expanded family of collagen-like proteins. To further explore the triple-helix motif and stabilization mechanisms in the absence of hydroxyproline (Hyp), predicted novel collagen-like proteins from Gram-positive and -negative bacteria were expressed in Escherichia coli and characterized. Soluble proteins capable of successful folding and in vitro refolding were observed for collagen proteins from Methylobacterium sp 4-46, Rhodopseudomonas palustris and Solibacter usitatus . In contrast, all protein constructs from Clostridium perfringens were found predominantly in inclusion bodies. However, attachment of a heterologous N-terminal or C-terminal noncollagenous folding domain induced the Clostridium perfringens collagen domain to fold and become soluble. The soluble constructs from different bacteria had typical collagen triple-helical features and showed surprisingly similar thermal stabilities despite diverse amino acid compositions. These collagen-like proteins provide a resource for the development of biomaterials with new properties.
Journal of Biological Chemistry | 2011
Ayumi Yoshizumi; Jordan M. Fletcher; Zhuoxin Yu; Anton V. Persikov; Gail J. Bartlett; Aimee L. Boyle; Thomas L. Vincent; Derek N. Woolfson; Barbara Brodsky
Collagen triple helices fold slowly and inefficiently, often requiring adjacent globular domains to assist this process. In the Streptococcus pyogenes collagen-like protein Scl2, a V domain predicted to be largely α-helical, occurs N-terminal to the collagen triple helix (CL). Here, we replace this natural trimerization domain with a de novo designed, hyperstable, parallel, three-stranded, α-helical coiled coil (CC), either at the N terminus (CC-CL) or the C terminus (CL-CC) of the collagen domain. CD spectra of the constructs are consistent with additivity of independently and fully folded CC and CL domains, and the proteins retain their distinctive thermal stabilities, CL at ∼37 °C and CC at >90 °C. Heating the hybrid proteins to 50 °C unfolds CL, leaving CC intact, and upon cooling, the rate of CL refolding is somewhat faster for CL-CC than for CC-CL. A construct with coiled coils on both ends, CC-CL-CC, retains the ∼37 °C thermal stability for CL but shows less triple helix at low temperature and less denaturation at 50 °C. Most strikingly however, in CC-CL-CC, the CL refolds slower than in either CC-CL or CL-CC by almost two orders of magnitude. We propose that a single CC promotes folding of the CL domain via nucleation and in-register growth from one end, whereas initiation and growth from both ends in CC-CL-CC results in mismatched registers that frustrate folding. Bioinformatics analysis of natural collagens lends support to this because, where present, there is generally only one coiled-coil domain close to the triple helix, and it is nearly always N-terminal to the collagen repeat.
Protein Science | 2010
Zhuoxin Yu; Oleg Mirochnitchenko; Chunying Xu; Ayumi Yoshizumi; Barbara Brodsky; Masayori Inouye
Proper folding of the (Gly‐Xaa‐Yaa)n sequence of animal collagens requires adjacent N‐ or C‐terminal noncollagenous trimerization domains which often contain coiled‐coil or beta sheet structure. Collagen‐like proteins have been found recently in a number of bacteria, but little is known about their folding mechanism. The Scl2 collagen‐like protein from Streptococcus pyogenes has an N‐terminal globular domain, designated Vsp, adjacent to its triple‐helix domain. The Vsp domain is required for proper refolding of the Scl2 protein in vitro. Here, recombinant Vsp domain alone is shown to form trimers with a significant α‐helix content and to have a thermal stability of Tm = 45°C. Examination of a new construct shows that the Vsp domain facilitates efficient in vitro refolding only when it is located N‐terminal to the triple‐helix domain but not when C‐terminal to the triple‐helix domain. Fusion of the Vsp domain N‐terminal to a heterologous (Gly‐Xaa‐Yaa)n sequence from Clostridium perfringens led to correct folding and refolding of this triple‐helix, which was unable to fold into a triple‐helical, soluble protein on its own. These results suggest that placement of a functional trimerization module adjacent to a heterologous Gly‐Xaa‐Yaa repeating sequence can lead to proper folding in some cases but also shows specificity in the relative location of the trimerization and triple‐helix domains. This information about their modular nature can be used in the production of novel types of bacterial collagen for biomaterial applications.
Journal of Biological Chemistry | 2011
Haiming Cheng; Shayan Rashid; Zhuoxin Yu; Ayumi Yoshizumi; Eileen Hwang; Barbara Brodsky
The hereditary bone disorder osteogenesis imperfecta is often caused by missense mutations in type I collagen that change one Gly residue to a larger residue and that break the typical (Gly-Xaa-Yaa)n sequence pattern. Site-directed mutagenesis in a recombinant bacterial collagen system was used to explore the effects of the Gly mutation position and of the identity of the residue replacing Gly in a homogeneous collagen molecular population. Homotrimeric bacterial collagen proteins with a Gly-to-Arg or Gly-to-Ser replacement formed stable triple-helix molecules with a reproducible 2 °C decrease in stability. All Gly replacements led to a significant delay in triple-helix folding, but a more dramatic delay was observed when the mutation was located near the N terminus of the triple-helix domain. This highly disruptive mutation, close to the globular N-terminal trimerization domain where folding is initiated, is likely to interfere with triple-helix nucleation. A positional effect of mutations was also suggested by trypsin sensitivity for a Gly-to-Arg replacement close to the triple-helix N terminus but not for the same replacement near the center of the molecule. The significant impact of the location of a mutation on triple-helix folding and conformation could relate to the severe consequences of mutations located near the C terminus of type I and type III collagens, where trimerization occurs and triple-helix folding is initiated.
Journal of Biological Chemistry | 2011
Zhuoxin Yu; Barbara Brodsky; Masayori Inouye
To better investigate the relationship between sequence, stability, and folding, the Streptococcus pyogenes collagenous domain CL (Gly-Xaa-Yaa)79 was divided to create three recombinant triple helix subdomains A, B, and C of almost equal size with distinctive amino acid features: an A domain high in polar residues, a B domain containing the highest concentration of Pro residues, and a very highly charged C domain. Each segment was expressed as a monomer, a linear dimer, and a linear trimer fused with the trimerization domain (V domain) in Escherichia coli. All recombinant proteins studied formed stable triple helical structures, but the stability varied depending on the amino acid sequence in the A, B, and C segments and increased as the triple helix got longer. V-AAA was found to melt at a much lower temperature (31.0 °C) than V-ABC (V-CL), whereas V-BBB melted at almost the same temperature (∼36–37 °C). When heat-denatured, the V domain enhanced refolding for all of the constructs; however, the folding rate was affected by their amino acid sequences and became reduced for longer constructs. The folding rates of all the other constructs were lower than that of the natural V-ABC protein. Amino acid substitution mutations at all Pro residues in the C fragment dramatically decreased stability but increased the folding rate. These results indicate that the thermostability of the bacterial collagen is dominated by the most stable domain in the same manner as found with eukaryotic collagens.
Biophysical Journal | 2010
Haiming Cheng; Shayan Rashid; Zhuoxin Yu; Ayumi Yoshizumi; Barbara Brodsky
Collaboration
Dive into the Zhuoxin Yu's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs