Barbara Colombini
University of Florence
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Colombini.
The Journal of Physiology | 2005
M. Angela Bagni; Giovanni Cecchi; Barbara Colombini
Very fast ramp stretches at 9.5–33 sarcomere lengths s−1 (l0s−1) stretching speed, 16–25 nm per half‐sarcomere (nm hs−1) amplitude were applied to activated intact frog muscle fibres at tetanus plateau, during the tetanus rise, during the isometric phase of relaxation and during isotonic shortening. Stretches produced an almost linear tension increase above the isometric level up to a peak, and fell to a lower value in spite of continued stretching, indicating that the fibre became suddenly very compliant. This suggests that peak tension (critical tension, Pc) represents the tension at which crossbridges are forcibly detached by the stretch. The ratio of Pc to the isometric tension at tetanus plateau (P0) was 2.37 ± 0.12 (s.e.m.). This ratio did not change significantly at lower tension (P) during the tetanus rise but decreased with time during the relaxation and increased with speed during isotonic shortening. At tetanus plateau Pc occurred when sarcomere elongation attained a critical length (Lc) of 10.98 ± 0.13 nm hs−1, independently of the stretching speed. Lc remained constant during the tetanus rise but decreased on the relaxation and increased during isotonic shortening. Length‐clamp experiments on the relaxation showed that the lower values of Pc/P ratio and Lc, were both due to the slow sarcomere stretching occurring during this phase. Our data show that Pc can be used as a measure of crossbridge number, while Lc is a measure of crossbridge mean extension. Accordingly, for a given tension, crossbridges on the isometric relaxation are fewer than during the rise, develop a greater individual force and have a greater mean extension, while during isotonic shortening crossbridges are in a greater number but develop a smaller individual force and have a smaller extension.
Journal of Muscle Research and Cell Motility | 2004
Maria Angela Bagni; Giovanni Cecchi; E. Cecchini; Barbara Colombini; F. Colomo
Force responses to fast ramp stretches at various velocities were recorded from single muscle fibres isolated from either lumbricalis digiti IV or tibialis anterior muscle of the frog (Rana esculenta) at sarcomere length between 2.15 and 3.25 μm at 15° C. Stretches were applied at rest, at tetanus plateau and during the tetanus rise. Stretches with the same velocity but different accelerations were imposed to the fibre to evaluate the effect of fibre inertia on the force responses. Length changes were measured at sarcomere level with either a laser diffractometer or a striation follower apparatus. The force response to a fast ramp stretch could be divided into two phases. The initial fast one (phase 1) lasts for the acceleration period during which the stretching velocity rises up to the steady state. The second slower phase (phase 2) lasts for the remainder of the stretch and corresponds to the well-known elastic response of the fibre. Most of this paper is concerned with phase 1. The amplitude of the initial fast phase was proportional to the stretching velocity as expected from a viscous response. This viscosity was associated with a very short (about 10 μs) relaxation time. The amplitude of the fast phase increased progressively with tension during the tetanus rise and scaled down with sarcomere length approximately in the same way as tetanic tension and fibre stiffness. These data suggest that activated fibres have a significant internal viscosity which may arise from crossbridge interaction
The Journal of Physiology | 2007
Barbara Colombini; Marta Nocella; Giulia Benelli; Giovanni Cecchi; Maria Angela Bagni
The mechanism of force enhancement during lengthening was investigated on single frog muscle fibres by using fast stretches to measure the rupture tension of the crossbridge ensemble. Fast stretches were applied to one end of the activated fibre and force responses were measured at the other. Sarcomere length was measured by a striation follower device. Fast stretching induced a linear increase of tension that reached a peak and fell before the end of the stretch indicating that a sudden increase of fibre compliance occurred due to forced crossbridge detachment induced by the fast loading. The peak tension (critical tension, Pc) and the sarcomere length needed to reach Pc (critical length, Lc) were measured at various tensions during the isometric tetanus rise and during force enhancement by slow lengthening. The data showed that Pc was proportional to the tension generated by the fibre under both isometric and slow lengthening conditions. However, for a given tension increase, Pc was 6.5 times greater during isometric than during lengthening conditions. Isometric critical length was 13.04 ± 0.17 nm per half‐sarcomere (nm hs−1) independently of tension. During slow lengthening critical length fell as the force enhancement increased. For 90% enhancement, Lc reduced to 8.19 ± 0.039 nm hs−1. Assuming that the rupture force of the individual crossbridge is constant, these data indicate that the increase of crossbridge number during lengthening accounts for only 15.4% of the total force enhancement. The remaining 84.6% is accounted for by the increased mean strain of the crossbridges.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Barbara Colombini; M. Angela Bagni; Giovanni Romano; Giovanni Cecchi
Force generation and motion in skeletal muscle result from interaction between actin and myosin myofilaments through the cyclical formation and rupture of the actomyosin bonds, the cross-bridges, in the overlap region of the sarcomeres. Actomyosin bond properties were investigated here in single intact muscle fibers by using dynamic force spectroscopy. The force needed to forcibly detach the cross-bridge ensemble in the half-sarcomere (hs) was measured in a range of stretching velocity between 3.4 × 103 nm·hs−1·s−1 or 3.3 fiber length per second (l0s−1) and 6.1 × 104 nm·hs−1·s−1 or 50 l0·s−1 during tetanic force development. The rupture force of the actomyosin bond increased linearly with the logarithm of the loading rate, in agreement with previous experiments on noncovalent single bond and with Bell theory [Bell GI (1978) Science 200:618–627]. The analysis permitted calculation of the actomyosin interaction length, xβ and the dissociation rate constant for zero external load, k0. Mean xβ was 1.25 nm, a value similar to that reported for single actomyosin bond under rigor condition. Mean k0 was 20 s−1, a value about twice as great as that reported in the literature for isometric force relaxation in the same type of muscle fibers. These experiments show, for the first time, that force spectroscopy can be used to reveal the properties of the individual cross-bridge in intact skeletal muscle fibers.
American Journal of Physiology-cell Physiology | 2014
Marta Nocella; Giovanni Cecchi; Maria Angela Bagni; Barbara Colombini
Stretching of activated skeletal muscles induces a force increase above the isometric level persisting after stretch, known as residual force enhancement (RFE). RFE has been extensively studied; nevertheless, its mechanism remains debated. Unlike previous RFE studies, here the excess of force after stretch, termed static tension (ST), was investigated with fast stretches (amplitude: 3-4% sarcomere length; duration: 0.6 ms) applied at low tension during the tetanus rise in fiber bundles from flexor digitorum brevis (FDB) mouse muscle at 30°C. ST was measured at sarcomere length between 2.6 and 4.4 μm in normal and N-benzyl-p-toluene sulphonamide (BTS)-added (10 μM) Tyrode solution. The results showed that ST has the same characteristics and it is equivalent to RFE. ST increased with sarcomere length, reached a peak at 3.5 μm, and decreased to zero at ∼4.5 μm. At 4 μm, where active force was zero, ST was still 50% of maximum. BTS reduced force by ∼75% but had almost no effect on ST. Following stimulation, ST developed earlier than force, with a time course similar to internal Ca(2+) concentration: it was present 1 ms after the stimulus, at zero active force, and peaked at ∼3-ms delay. At 2.7 μm, activation increased the passive sarcomere stiffness by a factor of ∼7 compared with the relaxed state All our data indicate that ST, or RFE, is independent of the cross-bridge presence and it is due to the Ca(2+)-induced stiffening of a sarcomeric structure identifiable with titin.
Journal of Muscle Research and Cell Motility | 1999
Maria Angela Bagni; Giovanni Cecchi; Barbara Colombini; F. Colomo
The sarcomere stiffness was measured in single muscle fibres during the development of tetanic tension using a method insensitive to fibre intertia and viscosity. The stiffness was calculated by measuring the ratio between tension and sarcomere length during a period of fast sarcomere elongation at constant velocity. Tension changes were corrected for force truncation by the quick recovery mechanism. The results show that the relation between force and stiffness deviates from the direct proportionality less than previously reported. If the deviation is due to the presence of a linear myofilament compliance in series with the cross-bridges, our data suggest that myofilament compliance accounts for about 30% of the sarcomere compliance. This value is significantly smaller than 50–70% determined by X-ray diffraction measurements. These two different findings, however, may be reconciled by assuming that the myofilament compliance is non-linear increasing appropriately at low tension.
Journal of Muscle Research and Cell Motility | 2015
Dilson E. Rassier; Felipe de Souza Leite; Marta Nocella; Anabelle S. Cornachione; Barbara Colombini; Maria Angela Bagni
When skeletal muscles are stretched during activation in the absence of myosin-actin interactions, the force increases significantly. The force remains elevated throughout the activation period. The mechanism behind this non-crossbridge force, referred to as static tension, is unknown and generates debate in the literature. It has been suggested that the static tension is caused by Ca2+-induced changes in the properties of titin molecules that happens during activation and stretch, but a comprehensive evaluation of such possibility is still lacking. This paper reviews the general characteristics of the static tension, and evaluates the proposed mechanism by which titin may change the force upon stretch. Evidence is presented suggesting that an increase in intracellular Ca2+ concentration leads to Ca2+ binding to the PEVK region of titin. Such binding increases titin stiffness, which increases the overall sarcomere stiffness and causes the static tension. If this form of Ca2+-induced increase in titin stiffness is confirmed in future studies, it may have large implications for understating of the basic mechanisms of muscle contraction.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Peter J. Griffiths; Maria Angela Bagni; Barbara Colombini; Heinz Amenitsch; Sigrid Bernstorff; Christopher C. Ashley; Giovanni Cecchi
Force generation in myosin-based motile systems is thought to result from an angular displacement of the myosin subfragment 1 (S1) tail domain with respect to the actin filament axis. In muscle, raised temperature increases the force generated by S1, implying a greater change in tail domain angular displacement. We used time-resolved x-ray diffraction to investigate the structural corollary of this force increase by measuring M3 meridional reflection intensity during sinusoidal length oscillations. This technique allows definition of S1 orientation with respect to the myofilament axis. M3 intensity changes were approximately sinusoid at low temperatures but became increasingly distorted as temperature was elevated, with the formation of a double intensity peak at maximum shortening. This increased distortion could be accounted for by assuming a shift in orientation of the tail domain of actin-bound S1 toward the orientation at which M3 intensity is maximal, which is consistent with a tail domain rotation model of force generation in which the tail approaches a more perpendicular projection from the thin filament axis at higher temperatures. In power stroke simulations, the angle between S1 tail mean position during oscillations and the position at maximum intensity decreased by 4.7°, corresponding to a mean tail displacement toward the perpendicular of 0.73 nm for a temperature-induced force increase of 0.28 P0 from 4 to 22°C. Our findings suggest that at least 62% of crossbridge compliance is associated with the tail domain.
American Journal of Physiology-cell Physiology | 2008
Barbara Colombini; Marta Nocella; Giulia Benelli; Giovanni Cecchi; M. Angela Bagni
It is well known that the force developed by skeletal muscles increases with temperature. Despite the work done on this subject, the mechanism of force potentiation is still debated. Most of the published papers suggest that force enhancement is due to the increase of the individual cross-bridge force. However, reports on skinned fibers and single-molecule experiments suggest that cross-bridge force is temperature independent. The effects of temperature on cross-bridge properties in intact frog fibers were investigated in this study by applying fast stretches at various tension levels (P) on the tetanus rise at 5 degrees C and 14 degrees C to induce cross-bridge detachment. Cross-bridge number was measured from the force (critical force, P(c)) needed to detach the cross-bridge ensemble, and the average cross-bridge strain was calculated from the sarcomere elongation needed to reach P(c) (critical length, L(c)). Our results show that P(c) increased linearly with the force developed at both temperatures, but the P(c)/P ratio was considerably smaller at 14 degrees C. This means that the average force per cross bridge is greater at high temperature. This mechanism accounts for all the tetanic force enhancement. The critical length L(c) was independent of the tension developed at both temperatures but was significantly lower at high temperature suggesting that cross bridges at 14 degrees C are more strained. The increased cross-bridge strain accounts for the greater average force developed.
The Journal of Physiology | 2011
Marta Nocella; Barbara Colombini; Giulia Benelli; Giovanni Cecchi; M. Angela Bagni; Joseph D. Bruton
Non‐technical summary Prolonged muscle activity leads to a reduction of mechanical power and force output which is commonly indicated as muscular fatigue. The development of fatigue during repetitive stimulation of a skeletal muscle consists of an initial phase during which force decreases by 10–15%. This is followed by a second phase where force remains almost constant and finally a phase during which force drops precipitously to low levels. We show here that the initial fall in force is due to a reduction of the force generated by the individual molecular force generator, the cross‐bridge, whereas in subsequent phases the force decrease is caused by a reduction in the number of molecular force generators. These results increase our understanding of muscular fatigue mechanisms.