Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Colomo is active.

Publication


Featured researches published by F. Colomo.


Biophysical Journal | 2000

The effect of inorganic phosphate on force generation in single myofibrils from rabbit skeletal muscle.

Chiara Tesi; F. Colomo; S. Nencini; Corrado Poggesi

In striated muscle, force generation and phosphate (P(i)) release are closely related. Alterations in the [P(i)] bathing skinned fibers have been used to probe key transitions of the mechanochemical coupling. Accuracy in this kind of studies is reduced, however, by diffusional barriers. A new perfusion technique is used to study the effect of [P(i)] in single or very thin bundles (1-3 microM in diameter; 5 degrees C) of rabbit psoas myofibrils. With this technique, it is possible to rapidly jump [P(i)] during contraction and observe the transient and steady-state effects on force of both an increase and a decrease in [P(i)]. Steady-state isometric force decreases linearly with an increase in log[P(i)] in the range 500 microM to 10 mM (slope -0.4/decade). Between 5 and 200 microM P(i), the slope of the relation is smaller ( approximately -0.07/decade). The rate constant of force development (k(TR)) increases with an increase in [P(i)] over the same concentration range. After rapid jumps in [P(i)], the kinetics of both the force decrease with an increase in [P(i)] (k(Pi(+))) and the force increase with a decrease in [P(i)] (k(Pi(-))) were measured. As observed in skinned fibers with caged P(i), k(Pi(+)) is about three to four times higher than k(TR), strongly dependent on final [P(i)], and scarcely modulated by the activation level. Unexpectedly, the kinetics of force increase after jumps from high to low [P(i)] is slower: k(Pi(-)) is indistinguishable from k(TR) measured at the same [P(i)] and has the same calcium sensitivity.


The Journal of Physiology | 2002

Characterization of the cross-bridge force-generating step using inorganic phosphate and BDM in myofibrils from rabbit skeletal muscles

Chiara Tesi; F. Colomo; Corrado Poggesi

The inhibitory effects of inorganic phosphate (Pi) on isometric force in striated muscle suggest that in the ATPase reaction Pi release is coupled to force generation. Whether Pi release and the power stroke are synchronous events or force is generated by an isomerization of the quaternary complex of actomyosin and ATPase products (AM.ADP.Pi) prior to the following release of Pi is still controversial. Examination of the dependence of isometric force on [Pi] in rabbit fast (psoas; 5‐15 °C) and slow (soleus; 15‐20 °C) myofibrils was used to test the two‐step hypothesis of force generation and Pi release. Hyperbolic fits of force‐[Pi] relations obtained in fast and slow myofibrils at 15 °C produced an apparent asymptote as [Pi]∞ of 0.07 and 0.44 maximal isometric force (i.e. force in the absence of Pi) in psoas and soleus myofibrils, respectively, with an apparent Kd of 4.3 mm in both. In each muscle type, the force‐[Pi] relation was independent of temperature. However, 2,3‐butanedione 2‐monoxime (BDM) decreased the apparent asymptote of force in both muscle types, as expected from its inhibition of the force‐generating isomerization. These data lend strong support to models of cross‐bridge action in which force is produced by an isomerization of the AM.ADP.Pi complex immediately preceding the Pi release step.


The Journal of Physiology | 1997

Active and passive forces of isolated myofibrils from cardiac and fast skeletal muscle of the frog.

F. Colomo; Corrado Poggesi; G te Kronnie; Chiara Tesi

1. Force measurements in isolated myofibrils (15 degrees C; sarcomere length, 2.10 microns) were used in this study to determine whether sarcomeric proteins are responsible for the large differences in the amounts of active and passive tension of cardiac versus skeletal muscle. Single myofibrils and bundles of two to four myofibrils were prepared from glycerinated tibialis anterior and sartorius muscles of the frog. Skinned frog atrial myocytes were used as a model for cardiac myofibrils. 2. Electron microscope analysis of the preparations showed that: (i) frog atrial myocytes contained a small and variable number of individual myofibrils (from 1 to 7); (ii) the mean cross‐sectional area and mean number of myosin filaments of individual cardiac myofibrils did not differ significantly from those of single skeletal myofibrils; and (iii) the total myofibril cross‐sectional area of atrial myocytes was on average comparable to that of bundles of two to four skeletal myofibrils. 3. In maximally activated skeletal preparations, values of active force ranged from 0.45 +/‐ 0.03 microN for the single myofibrils (mean +/‐ S.E.M.; n = 16) to 1.44 +/‐ 0.24 microN for the bundles of two to four myofibrils (n = 9). Maximum active force values of forty‐five cardiac myocytes averaged 1.47 +/‐ 0.10 microN and exhibited a non‐continuous distribution with peaks at intervals of about 0.5 microN. The results suggest that variation in active force among cardiac preparations mainly reflects variability in the number of myofibrils inside the myocytes and that individual cardiac myofibrils develop the same average amount of force as single skeletal myofibrils. 4. The mean sarcomere length‐resting force relation of atrial myocytes could be superimposed on that of bundles of two to four skeletal myofibrils. This suggests that, for any given amount of strain, individual cardiac and skeletal sarcomeres bear essentially the same passive force. 5. The length‐passive tension data of all preparations could be fitted by an exponential equation. Equation parameters obtained for both types of myofibrils were in reasonable agreement with those reported for larger preparations of frog skeletal muscle but were very different from those estimated for multicellular frog atrial preparations. It is concluded that myofibrils are the major determinant of resting tension in skeletal muscle; structures other than the myofibrils are responsible for the high passive stiffness of frog cardiac muscle.


The Journal of Physiology | 1995

Absence of mechanical evidence for attached weakly binding cross‐bridges in frog relaxed muscle fibres.

Maria Angela Bagni; Giovanni Cecchi; F. Colomo; P. Garzella

1. Passive force responses to ramp stretches at various velocities were measured in intact and skinned single muscle fibres isolated from the lumbricalis muscle of the frog. Force was measured using a fast capacitance transducer and sarcomere length was measured using a laser light diffraction technique at a point very close to the fixed end so as to avoid effects of fibre inertia. Experiments were performed at 15 degrees C with sarcomere length between 2.13 and 3.27 microns under high (170 mM) and low (20 mM) ionic strength. 2. The analysis shows that the force response is the sum of at least three components: (i) elastic (force proportional to the amount of stretch), (ii) viscous (force proportional to rate of stretch), and (iii) viscoelastic (resembling the response of a pure viscous element in series with an elastic element). 3. The amplitude of all these components increased progressively with sarcomere length in the whole range measured. 4. A further component, attributable to the short‐range elasticity (SREC), was present in the force response of the intact fibres. 5. The amplitude of the force response decreased substantially upon skinning at high ionic strength but increased again at low ionic strength. The SREC was completely abolished by skinning. 6. None of the components of the force response was found to have the properties expected from the previously postulated ‘weakly binding bridges’.


Biophysical Journal | 1998

Force Regulation by Ca2+ in Skinned Single Cardiac Myocytes of Frog

Philip W. Brandt; F. Colomo; Corrado Poggesi; Chiara Tesi

Atrial and ventricular myocytes 200 to 300 microm long containing one to five myofibrils are isolated from frog hearts. After a cell is caught and held between two suction micropipettes the surface membrane is destroyed by briefly jetting relaxing solution containing 0.05% Triton X-100 on it from a third micropipette. Jetting buffered Ca2+ from other pipettes produces sustained contractions that relax completely on cessation. The pCa/force relationship is determined at 20 degrees C by perfusing a closely spaced sequence of pCa concentrations (pCa = -log[Ca2+]) past the skinned myocyte. At each step in the pCa series quick release of the myocyte length defines the tension baseline and quick restretch allows the kinetics of the return to steady tension to be observed. The pCa/force data fit to the Hill equation for atrial and ventricular myocytes yield, respectively, a pK (curve midpoint) of 5.86 +/- 0.03 (mean +/- SE.; n = 7) and 5.87 +/- 0.02 (n = 18) and an nH (slope) of 4.3 +/- 0.34 and 5.1 +/- 0.35. These slopes are about double those reported previously, suggesting that the cooperativity of Ca2+ activation in frog cardiac myofibrils is as strong as in fast skeletal muscle. The shape of the pCa/force relationship differs from that usually reported for skeletal muscle in that it closely follows the ideal fitted Hill plot with a single slope while that of skeletal muscle appears steeper in the lower than in the upper half. The rate of tension redevelopment following release restretch protocol increases with Ca2+ >10-fold and continues to rise after Ca2+ activated tension saturates. This finding provides support for a strong kinetic mechanism of force regulation by Ca2+ in frog cardiac muscle, at variance with previous reports on mammalian heart muscle. The maximum rate of tension redevelopment following restretch is approximately twofold faster for atrial than for ventricular myocytes, in accord with the idea that the intrinsic speed of the contractile proteins is faster in atrial than in ventricular myocardium.


The Journal of Physiology | 1994

Development of stiffness precedes cross-bridge attachment during the early tension rise in single frog muscle fibres.

Maria Angela Bagni; Giovanni Cecchi; F. Colomo; P. Garzella

1. Force responses to ramp stretches were recorded in single muscle fibres isolated from the lumbricalis muscle of the frog. Stretches were applied at rest and at progressively increasing times after a single stimulus. 2. The increase of fibre stiffness that precedes tension development has a ‘static’ component that accounts for the whole fibre stiffness increase during the latent period and at very low tension at the beginning of the twitch. 3. Static stiffness increase was not affected by 2,3‐butanedione‐2‐monoxime, a drug that almost completely inhibited twitch tension. 4. Static stiffness increased approximately 5‐fold as the sarcomere length was increased from 2.1 to 2.84 microns. 5. These results suggest that static fibre stiffness increase is not attributable to the formation of non‐force‐generating cross‐bridges.


Journal of Muscle Research and Cell Motility | 1990

Tension and stiffness of frog muscle fibres at full filament overlap.

Maria Angela Bagni; Giovanni Cecchi; F. Colomo; Corrado Poggesi

SummaryStiffness measurements in activated skeletal muscle fibres are often used as one means of estimating the number of attached crossbridges on the assumption that myofilament compliances do not contribute significantly to the fibre compliance. This assumption was tested by studying the effects of sarcomere length on fibre stiffness in the plateau region of the length-tension diagram (from 1.96 to 2.16μm sarcomere length in the tibialis anterior muscle of the frog). Lengthening of the sarcomere across this region in fact, produces only an increase in the proportion of actin filament free from cross-bridges without altering the amount of effective overlap; no change in fibre stiffness is therefore expected if actin filaments are perfectly rigid. The results show that while tetanic tension remained constant within 1.5%, as the sarcomere length was increased from 1.96 to 2.16μm fibre stiffness decreased by about 4%, indicating that a significant proportion of sarcomere compliance is localized in the actin filaments. A simple model based on the sliding filament theory was used in order to calculate the relative contribution of actin filaments to fibre compliance. In the model it was assumed that fibre compliance resulted from the combination of crossbridge compliance (distributed over the overlap zone) in series with thin filament and tendon compliances. The calculations show that the experimental data could be adequately predicted only assuming that about 19% of sarcomere compliance is due to actin filament compliance.


Journal of Muscle Research and Cell Motility | 1992

Effects of 2,3-butanedione monoxime on the crossbridge kinetics in frog single muscle fibres.

Maria Angela Bagni; Giovanni Cecchi; F. Colomo; P. Garzella

SummaryThe effects of 2,3-butanedione monoxime (BDM) on contraction characteristics were studied at 5‡C in single intact fibres isolated from the tibialis anterior muscle of the frog. The force-velocity relation was determined using the controlled-velocity method in either whole fibres or short fibre segments in which sarcomere shortening was measured by a laser light diffraction method. It is shown that 3mm BDM decreases the speed of rise and the amount of tetanus tension, reduces the maximum velocity of shortening and increases the curvature of the force-velocity relation, as well as the value for the stiffness to tension ratio. BDM also slowed down the redevelopment of tetanus tension after a period of unloaded shortening both in fixed-end and in length-clamp conditions. In normal and in BDM-treated fibres length-clamping increased the speed of the initial rise of tetanus tension but not that of the recovery after shortening. The observed force-velocity data points were fitted by the Huxley (1957) equation. It was found that BDM produces a conspicuous decrease of the rate constant for crossbridge attachment. This effect, and also a reduction of the force per crossbridge, are responsible for the depression of the contractile characteristics produced by BDM.


Advances in Experimental Medicine and Biology | 1998

Calcium Dependence of the Apparent Rate of Force Generation in Single Striated Muscle Myofibrils Activated by Rapid Solution Changes

F. Colomo; S. Nencini; Corrado Poggesi; Chiara Tesi

Single myofibrils or small groups of myofibrils were isolated from different types of striated muscle: rabbit psoas, frog tibialis anterior, frog atrial and ventricular muscle. The Ca2+ concentration of the solution perfusing the myofibrils was changed within few milliseconds by translating the interface between two flowing streams of solution across the preparations. In all types of myofibrils tested, the time course of force rise in response to maximal activation (pCa 4.75) was approximately monoexponential and nearly superimposable on that observed after a release-restretch protocol applied to the myofibril at the plateau of maximal contractions. This suggests that the kinetics of force development following rapid myofibril activation essentially reflects the kinetics of interaction between contractile proteins. The half time of force rise in response to maximal activation varied among different myofibril types; it was shortest in frog tibialis anterior myofibrils and longest in frog ventricular myofibrils. In all types of myofibril preparations tested the half time of force rise increased with decreasing Ca2+ levels in the activating solution. The finding provides support for a kinetic mechanism of force regulation by Ca2+ in all types of striated muscle. The extent of this Ca2+ effect, however, varied among the different myofibril preparations tested; at 15 degrees C for instance, it was smaller in frog tibialis anterior myofibrils than in the other preparations.


The Journal of Physiology | 1999

Modulation by substrate concentration of maximal shortening velocity and isometric force in single myofibrils from frog and rabbit fast skeletal muscle

Chiara Tesi; F. Colomo; S. Nencini; Corrado Poggesi

1 The effects of magnesium adenosine triphosphate (MgATP; also referred to as ‘substrate’) concentration on maximal force and shortening velocity have been studied at 5 °C in single and thin bundles of striated muscle myofibrils. The minute diameters of the preparations promote rapid diffusional equilibrium between the bathing medium and lattice space so that during contraction fine control of substrate and product concentrations is achieved. 2 Myofibrils from frog tibialis anterior and rabbit psoas fast skeletal muscles were activated maximally by rapidly (10 ms) exchanging a continuous flux of pCa 8.0 for one at pCa 4.75 at a range of substrate concentrations from 10 μM to 5 mM. At high substrate concentrations maximal isometric tension and shortening velocity of both frog and rabbit myofibrils were very close to those determined in whole fibre preparations from the same muscle types. 3 As in frog and rabbit skinned whole fibres, the maximal isometric force of the myofibril preparations decreases as MgATP concentration is increased. The maximal velocity of unloaded shortening (V0) depends hyperbolically on substrate concentration. V0 extrapolated to infinite MgATP (3.6 ± 0.2 and 0.8 ± 0.03 l0 s−1 in frog and rabbit myofibrils, respectively) is very close to that determined directly at high substrate concentration. The Km is 210 ± 20 μM for frog tibialis anterior and 120 ± 10 μM for rabbit psoas myofibrils, values about half those found in larger whole fibre preparations of the same muscle types. This implies that measurements in whole skinned fibres are perturbed by diffusional delays, even in the presence of MgATP regenerating systems. 4 In both frog and rabbit myofibrils, the Km for V0 is about one order of magnitude higher than the Km for myofibrillar MgATPase determined biochemically in the same experimental conditions. This confirms that the difference between the Km values for MgATPase and shortening velocity is a basic feature of the mechanism of chemomechanical transduction in muscle contraction.

Collaboration


Dive into the F. Colomo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiara Tesi

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Garzella

University of Florence

View shared research outputs
Top Co-Authors

Avatar

S. Nencini

University of Florence

View shared research outputs
Top Co-Authors

Avatar

G. Cecchi

University of Florence

View shared research outputs
Researchain Logo
Decentralizing Knowledge