Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara D. Pachikian is active.

Publication


Featured researches published by Barbara D. Pachikian.


The American Journal of Clinical Nutrition | 2009

Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal

Patrice D. Cani; Elodie Lecourt; Evelyne M. Dewulf; Florence Sohet; Barbara D. Pachikian; Damien Naslain; Fabienne De Backer; Audrey M. Neyrinck; Nathalie M. Delzenne

BACKGROUND We have previously shown that gut microbial fermentation of prebiotics promotes satiety and lowers hunger and energy intake in humans. In rodents, these effects are associated with an increase in plasma gut peptide concentrations, which are involved in appetite regulation and glucose homeostasis. OBJECTIVE Our aim was to examine the effects of prebiotic supplementation on satiety and related hormones during a test meal for human volunteers by using a noninvasive micromethod for blood sampling to measure plasma gut peptide concentrations. DESIGN This study was a randomized, double-blind, parallel, placebo-controlled trial. A total of 10 healthy adults (5 men and 5 women) were randomly assigned to groups that received either 16 g prebiotics/d or 16 g dextrin maltose/d for 2 wk. Meal tolerance tests were performed in the morning to measure the following: hydrogen breath test, satiety, glucose homeostasis, and related hormone response. RESULTS We show that the prebiotic treatment increased breath-hydrogen excretion (a marker of gut microbiota fermentation) by approximately 3-fold and lowered hunger rates. Prebiotics increased plasma glucagon-like peptide 1 and peptide YY concentrations, whereas postprandial plasma glucose responses decreased after the standardized meal. The areas under the curve for plasma glucagon-like peptide 1 and breath-hydrogen excretion measured after the meal (0-60 min) were significantly correlated (r = 0.85, P = 0.007). The glucose response was inversely correlated with the breath-hydrogen excretion areas under the curve (0-180 min; r = -0.73, P = 0.02). CONCLUSION Prebiotic supplementation was associated with an increase in plasma gut peptide concentrations (glucagon-like peptide 1 and peptide YY), which may contribute in part to changes in appetite sensation and glucose excursion responses after a meal in healthy subjects.


Journal of Nutritional Biochemistry | 2011

Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARγ-related adipogenesis in the white adipose tissue of high-fat diet-fed mice

Evelyne M. Dewulf; Patrice D. Cani; Audrey M. Neyrinck; Sam Possemiers; Ann Van Holle; Giulio G. Muccioli; Louise Deldicque; Laure B. Bindels; Barbara D. Pachikian; Florence Sohet; Eric Mignolet; Marc Francaux; Yvan Larondelle; Nathalie M. Delzenne

Inulin-type fructans (ITF) are nondigestible/fermentable carbohydrates which are able - through the modification of the gut microbiota - to counteract high-fat (HF) diet-induced obesity, endotoxemia and related-metabolic alterations. However, their influence on adipose tissue metabolism has been poorly studied until now. The aim of this study was to assess the influence of ITF supplementation on adipose tissue metabolism, by focusing on a G protein-coupled receptor (GPR), GPR43, as a potential link between gut fermentation processes and white adipose tissue development. Male C57bl6/J mice were fed a standard diet or an HF diet without or with ITF (0.2 g/day per mouse) during 4 weeks. The HF diet induced an accumulation of large adipocytes, promoted peroxisome proliferator activated receptor gamma (PPARγ)-activated differentiation factors and led to a huge increase in GPR43 expression in the subcutaneous adipose tissue. All those effects were blunted by ITF treatment, which modulated the gut microbiota in favor of bifidobacteria at the expense of Roseburia spp. and of Clostridium cluster XIVa. The dietary modulation of GPR43 expression seems independent of endotoxemia, in view of data obtained in vivo (acute and chronic lipopolysaccharides treatment). In conclusion, ITF, which promote gut fermentation, paradoxically counteract GPR43 overexpression induced in the adipose tissue by an HF diet, a phenomenon that correlates with a beneficial effect on adiposity and with potential decrease in PPARγ-activated processes.


Biochemical Pharmacology | 2009

Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice.

Florence Sohet; Audrey M. Neyrinck; Barbara D. Pachikian; Fabienne De Backer; Laure B. Bindels; Petra Niklowitz; Thomas Menke; Patrice D. Cani; Nathalie M. Delzenne

BACKGROUND Diabetes and obesity are metabolic disorders induced by an excessive dietary intake of fat, usually related to inflammation and oxidative stress. AIMS The aim of the study is to investigate the effect of the antioxidant coenzyme Q10 (CoQ10) on hepatic metabolic and inflammatory disorders associated with diet-induced obesity and glucose intolerance. METHODS C57bl6/j mice were fed for 8 weeks, either a control diet (CT) or a high-fat diet plus 21% fructose in the drinking water (HFF). CoQ10 supplementation was performed in this later condition (HFFQ). RESULTS HFF mice exhibit increased energy consumption, fat mass development, fasting glycaemia and insulinemia and impaired glucose tolerance. HFF treatment promoted the expression of genes involved in reactive oxygen species production (NADPH oxidase), inflammation (CRP, STAMP2) and metabolism (CPT1alpha) in the liver. CoQ10 supplementation decreased the global hepatic mRNA expression of inflammatory and metabolic stresses markers without changing obesity and tissue lipid peroxides compared to HFF mice. HFF diets paradoxically decreased TBARS (reflecting lipid peroxides) levels in liver, muscle and adipose tissue versus CT group, an effect related to vitamin E content of the diet. CONCLUSION In conclusion, HFF model promotes glucose intolerance and obesity by a mechanism independent on the level of tissue peroxides. CoQ10 tends to decrease hepatic stress gene expression, independently of any modulation of lipid peroxidation, which is classically considered as its most relevant effect.


PLOS ONE | 2012

Restoring Specific Lactobacilli Levels Decreases Inflammation and Muscle Atrophy Markers in an Acute Leukemia Mouse Model

Laure B. Bindels; Raphaël Beck; Olivier Schakman; Jennifer C. Martin; Fabienne De Backer; Florence Sohet; Evelyne M. Dewulf; Barbara D. Pachikian; Audrey M. Neyrinck; Jean-Paul Thissen; Julien Verrax; Pedro Buc Calderon; Bruno Pot; Corinne Grangette; Patrice D. Cani; Karen P. Scott; Nathalie M. Delzenne

The gut microbiota has recently been proposed as a novel component in the regulation of host homeostasis and immunity. We have assessed for the first time the role of the gut microbiota in a mouse model of leukemia (transplantation of BaF3 cells containing ectopic expression of Bcr-Abl), characterized at the final stage by a loss of fat mass, muscle atrophy, anorexia and inflammation. The gut microbial 16S rDNA analysis, using PCR-Denaturating Gradient Gel Electrophoresis and quantitative PCR, reveals a dysbiosis and a selective modulation of Lactobacillus spp. (decrease of L. reuteri and L. johnsonii/gasseri in favor of L. murinus/animalis) in the BaF3 mice compared to the controls. The restoration of Lactobacillus species by oral supplementation with L. reuteri 100-23 and L. gasseri 311476 reduced the expression of atrophy markers (Atrogin-1, MuRF1, LC3, Cathepsin L) in the gastrocnemius and in the tibialis, a phenomenon correlated with a decrease of inflammatory cytokines (interleukin-6, monocyte chemoattractant protein-1, interleukin-4, granulocyte colony-stimulating factor, quantified by multiplex immuno-assay). These positive effects are strain- and/or species-specific since L. acidophilus NCFM supplementation does not impact on muscle atrophy markers and systemic inflammation. Altogether, these results suggest that the gut microbiota could constitute a novel therapeutic target in the management of leukemia-associated inflammation and related disorders in the muscle.


PLOS ONE | 2011

Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice : genomic analysis of cellular targets.

Barbara D. Pachikian; Ahmed Essaghir; Jean-Baptiste Demoulin; Audrey M. Neyrinck; Emilie Catry; Fabienne De Backer; Nicolas Dejeans; Evelyne M. Dewulf; Florence Sohet; Laurence Portois; Louise Deldicque; Olivier Molendi-Coste; Isabelle Leclercq; Marc Francaux; Yvon Carpentier; Fabienne Foufelle; Giulio G. Muccioli; Patrice D. Cani; Nathalie M. Delzenne

Patients with non-alcoholic fatty liver disease are characterised by a decreased n-3/n-6 polyunsaturated fatty acid (PUFA) ratio in hepatic phospholipids. The metabolic consequences of n-3 PUFA depletion in the liver are poorly understood. We have reproduced a drastic drop in n-3 PUFA among hepatic phospholipids by feeding C57Bl/6J mice for 3 months with an n-3 PUFA depleted diet (DEF) versus a control diet (CT), which only differed in the PUFA content. DEF mice exhibited hepatic insulin resistance (assessed by euglycemic-hyperinsulinemic clamp) and steatosis that was associated with a decrease in fatty acid oxidation and occurred despite a higher capacity for triglyceride secretion. Microarray and qPCR analysis of the liver tissue revealed higher expression of all the enzymes involved in lipogenesis in DEF mice compared to CT mice, as well as increased expression and activation of sterol regulatory element binding protein-1c (SREBP-1c). Our data suggest that the activation of the liver X receptor pathway is involved in the overexpression of SREBP-1c, and this phenomenon cannot be attributed to insulin or to endoplasmic reticulum stress responses. In conclusion, n-3 PUFA depletion in liver phospholipids leads to activation of SREBP-1c and lipogenesis, which contributes to hepatic steatosis.


International Immunopharmacology | 2009

Dietary supplementation with chitosan derived from mushrooms changes adipocytokine profile in diet-induced obese mice, a phenomenon linked to its lipid-lowering action

Audrey M. Neyrinck; Laure B. Bindels; Fabienne De Backer; Barbara D. Pachikian; Patrice D. Cani; Nathalie M. Delzenne

Recent data reported that chitosan reduces high-fat (HF) diet-induced obesity in mice without describing the metabolic consequences of such an effect. The aim of this study was to investigate the capacity of chitosan derived from edible mushrooms to modify adipocytokine levels and to assess the relevance of this effect on the development of fat mass, and on glucose and lipid metabolism in obese mice. Mice were fed a HF diet or a HF diet supplemented with 5% fungal chitosan for ten weeks. HF-induced hypertriglyceridaemia, fasting hyperinsulinaemia and fat accumulation in liver, muscle and white adipose tissue (WAT) were reduced after chitosan treatment. The higher lipid content in the caecum following treatment with chitosan suggested that this dietary fiber reduced lipid absorption. We postulated that the lower triglyceridaemia observed upon chitosan treatment could also be the result of the lower FIAF (fasting-induced adipose factor) expression observed in visceral adipose tissue. IL-6, resistin and leptin levels decreased in the serum after chitosan supplementation. We conclude that fungal chitosan counteracts some inflammatory disorders and metabolic alterations occurring in diet-induced obese mice since it decreases feed efficiency, fat mass, adipocytokine secretion and ectopic fat deposition in the liver and the muscle.


Molecular Nutrition & Food Research | 2013

Prebiotic approach alleviates hepatic steatosis: Implication of fatty acid oxidative and cholesterol synthesis pathways

Barbara D. Pachikian; Ahmed Essaghir; Jean-Baptitste Demoulin; Emilie Catry; Aaudrey M Neyrinck; Evelyne M. Dewulf; Florence Sohet; Laurence Portois; Laure-Alix Clerbaux; Yvon Carpentier; Sam Possemiers; Guido T. Bommer; Patrice D. Cani; Nathalie M. Delzenne

SCOPE Recent data suggest that gut microbiota contributes to the regulation of host lipid metabolism. We report how fermentable dietary fructo-oligosaccharides (FOS) control hepatic steatosis induced by n-3 PUFA depletion, which leads to hepatic alterations similar to those observed in non-alcoholic fatty liver disease patients. METHODS AND RESULTS C57Bl/6J mice fed an n-3 PUFA-depleted diet for 3 months were supplemented with FOS during the last 10 days of treatment. FOS-treated mice exhibited higher caecal Bifidobacterium spp. and lower Roseburia spp. content. Microarray analysis of hepatic mRNA revealed that FOS supplementation reduced hepatic triglyceride accumulation through a proliferator-activated receptor α-stimulation of fatty acid oxidation and lessened cholesterol accumulation by inhibiting sterol regulatory element binding protein 2-dependent cholesterol synthesis. Cultured precision-cut liver slices confirmed the inhibition of fatty acid oxidation. FOS effects were related to a decreased hepatic micro-RNA33 expression and to an increased colonic glucagon-like peptide 1 production. CONCLUSIONS The changes in gut microbiota composition by n-3 PUFA-depletion and prebiotics modulate hepatic steatosis by changing gene expression in the liver, a phenomenon that could implicate micro-RNA and gut-derived hormones. Our data underline the advantage of targeting the gut microbiota by colonic nutrients in the management of liver disease.


Journal of Nutrition | 2010

Changes in Intestinal Bifidobacteria Levels Are Associated with the Inflammatory Response in Magnesium-Deficient Mice

Barbara D. Pachikian; Audrey M. Neyrinck; Louise Deldicque; Fabienne De Backer; Emilie Catry; Evelyne M. Dewulf; Florence Sohet; Laure B. Bindels; Amandine Everard; Marc Francaux; Yves Guiot; Patrice D. Cani; Nathalie M. Delzenne

Magnesium (Mg) deficiency is a common nutritional disorder that is linked to an inflammatory state characterized by increased plasma acute phase protein and proinflammatory cytokine concentrations. Recent studies have shown that changes in the composition of gut microbiota composition participate in systemic inflammation. In this study, therefore, we assessed the potential role of gut microbiota in intestinal and systemic inflammation associated with Mg deficiency in mice. For this purpose, mice were fed a control or Mg-deficient diet (500 mg vs. 70 mg Mg/kg) for 4 or 21 d. Compared with the mice fed the control diet, mice fed the Mg-deficient diet for 4 d had a lower gut bifidobacteria content (-1.5 log), a 36-50% lower mRNA content of factors controlling gut barrier function in the ileum (zonula occludens-1, occludin, proglucagon), and a higher mRNA content (by approximately 2-fold) in the liver and/or intestine of tumor necrosis factor-alpha, interleukin-6, CCAAT/enhancer binding protein homologous protein, and activating transcription factor 4, reflecting inflammatory and cellular stress. In contrast, mice fed the Mg-deficient diet for 21 d had a higher cecal bifidobacteria content compared with the control group, a phenomenon accompanied by restoration of the intestinal barrier and the absence of inflammation. In conclusion, we show that Mg deficiency, independently of any other changes in nutrient intake, modulates the concentration of bifidobacteria in the gut, a phenomenon that may time-dependently affect inflammation and metabolic disorders in mice.


BMC Physiology | 2008

Hepatic steatosis in n-3 fatty acid depleted mice: focus on metabolic alterations related to tissue fatty acid composition.

Barbara D. Pachikian; Audrey M. Neyrinck; Patrice D. Cani; Laurence Portois; Louise Deldicque; F. De Backer; Laure B. Bindels; Florence Sohet; Willy Malaisse; Marc Francaux; Yvon Carpentier; Nathalie M. Delzenne

BackgroundThere are only few data relating the metabolic consequences of feeding diets very low in n-3 fatty acids. This experiment carried out in mice aims at studying the impact of dietary n-3 polyunsaturated fatty acids (PUFA) depletion on hepatic metabolism.Resultsn-3 PUFA depletion leads to a significant decrease in body weight despite a similar caloric intake or adipose tissue weight. n-3 PUFA depleted mice exhibit hypercholesterolemia (total, HDL, and LDL cholesterol) as well as an increase in hepatic cholesteryl ester and triglycerides content. Fatty acid pattern is profoundly modified in hepatic phospholipids and triglycerides. The decrease in tissue n-3/n-6 PUFA ratio correlates with steatosis. Hepatic mRNA content of key factors involved in lipid metabolism suggest a decreased lipogenesis (SREBP-1c, FAS, PPARγ), and an increased β-oxidation (CPT1, PPARα and PGC1α) without modification of fatty acid esterification (DGAT2, GPAT1), secretion (MTTP) or intracellular transport (L-FABP). Histological analysis reveals alterations of liver morphology, which can not be explained by inflammatory or oxidative stress. However, several proteins involved in the unfolded protein response are decreased in depleted mice.Conclusionn-3 PUFA depletion leads to important metabolic alterations in murine liver. Steatosis occurs through a mechanism independent of the shift between β-oxidation and lipogenesis. Moreover, long term n-3 PUFA depletion decreases the expression of factors involved in the unfolded protein response, suggesting a lower protection against endoplasmic reticulum stress in hepatocytes upon n-3 PUFA deficiency.


Gut | 2018

Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction

Emilie Catry; Laure B. Bindels; Anne Tailleux; Sophie Lestavel; Audrey M. Neyrinck; Jean-François Goossens; Irina Lobysheva; Hubert Plovier; Ahmed Essaghir; Jean-Baptiste Demoulin; Caroline Bouzin; Barbara D. Pachikian; Patrice D. Cani; Bart Staels; Chantal Dessy; Nathalie M. Delzenne

Objective To investigate the beneficial role of prebiotics on endothelial dysfunction, an early key marker of cardiovascular diseases, in an original mouse model linking steatosis and endothelial dysfunction. Design We examined the contribution of the gut microbiota to vascular dysfunction observed in apolipoprotein E knockout (Apoe−/−) mice fed an n-3 polyunsaturated fatty acid (PUFA)-depleted diet for 12 weeks with or without inulin-type fructans (ITFs) supplementation for the last 15 days. Mesenteric and carotid arteries were isolated to evaluate endothelium-dependent relaxation ex vivo. Caecal microbiota composition (Illumina Sequencing of the 16S rRNA gene) and key pathways/mediators involved in the control of vascular function, including bile acid (BA) profiling, gut and liver key gene expression, nitric oxide and gut hormones production were also assessed. Results ITF supplementation totally reverses endothelial dysfunction in mesenteric and carotid arteries of n-3 PUFA-depleted Apoe−/− mice via activation of the nitric oxide (NO) synthase/NO pathway. Gut microbiota changes induced by prebiotic treatment consist in increased NO-producing bacteria, replenishment of abundance in Akkermansia and decreased abundance in bacterial taxa involved in secondary BA synthesis. Changes in gut and liver gene expression also occur upon ITFs suggesting increased glucagon-like peptide 1 production and BA turnover as drivers of endothelium function preservation. Conclusions We demonstrate for the first time that ITF improve endothelial dysfunction, implicating a short-term adaptation of both gut microbiota and key gut peptides. If confirmed in humans, prebiotics could be proposed as a novel approach in the prevention of metabolic disorders-related cardiovascular diseases.

Collaboration


Dive into the Barbara D. Pachikian's collaboration.

Top Co-Authors

Avatar

Nathalie M. Delzenne

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Audrey M. Neyrinck

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Patrice D. Cani

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Laure B. Bindels

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Florence Sohet

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Emilie Catry

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Evelyne M. Dewulf

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Jean-Paul Thissen

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Laurence Portois

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

F. De Backer

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge