Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathalie M. Delzenne is active.

Publication


Featured researches published by Nathalie M. Delzenne.


Diabetes | 2007

Metabolic endotoxemia initiates obesity and insulin resistance

Patrice D. Cani; Jacques Amar; Miguel A. Iglesias; Marjorie Poggi; Claude Knauf; Delphine Bastelica; Audrey M. Neyrinck; Francesca Fava; Kieran M. Tuohy; Aurélie Waget; Evelyne Delmée; Béatrice Cousin; Thierry Sulpice; Bernard Chamontin; Jean Ferrières; Jean-François Tanti; Glenn R. Gibson; Louis Casteilla; Nathalie M. Delzenne; Marie Christine Alessi; Rémy Burcelin

Diabetes and obesity are two metabolic diseases characterized by insulin resistance and a low-grade inflammation. Seeking an inflammatory factor causative of the onset of insulin resistance, obesity, and diabetes, we have identified bacterial lipopolysaccharide (LPS) as a triggering factor. We found that normal endotoxemia increased or decreased during the fed or fasted state, respectively, on a nutritional basis and that a 4-week high-fat diet chronically increased plasma LPS concentration two to three times, a threshold that we have defined as metabolic endotoxemia. Importantly, a high-fat diet increased the proportion of an LPS-containing microbiota in the gut. When metabolic endotoxemia was induced for 4 weeks in mice through continuous subcutaneous infusion of LPS, fasted glycemia and insulinemia and whole-body, liver, and adipose tissue weight gain were increased to a similar extent as in high-fat–fed mice. In addition, adipose tissue F4/80-positive cells and markers of inflammation, and liver triglyceride content, were increased. Furthermore, liver, but not whole-body, insulin resistance was detected in LPS-infused mice. CD14 mutant mice resisted most of the LPS and high-fat diet–induced features of metabolic diseases. This new finding demonstrates that metabolic endotoxemia dysregulates the inflammatory tone and triggers body weight gain and diabetes. We conclude that the LPS/CD14 system sets the tone of insulin sensitivity and the onset of diabetes and obesity. Lowering plasma LPS concentration could be a potent strategy for the control of metabolic diseases.


Diabetes | 2008

Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice

Patrice D. Cani; Rodrigo Bibiloni; Claude Knauf; Aurélie Waget; Audrey M. Neyrinck; Nathalie M. Delzenne; Rémy Burcelin

OBJECTIVE—Diabetes and obesity are characterized by a low-grade inflammation whose molecular origin is unknown. We previously determined, first, that metabolic endotoxemia controls the inflammatory tone, body weight gain, and diabetes, and second, that high-fat feeding modulates gut microbiota and the plasma concentration of lipopolysaccharide (LPS), i.e., metabolic endotoxemia. Therefore, it remained to demonstrate whether changes in gut microbiota control the occurrence of metabolic diseases. RESEARCH DESIGN AND METHODS—We changed gut microbiota by means of antibiotic treatment to demonstrate, first, that changes in gut microbiota could be responsible for the control of metabolic endotoxemia, the low-grade inflammation, obesity, and type 2 diabetes and, second, to provide some mechanisms responsible for such effect. RESULTS—We found that changes of gut microbiota induced by an antibiotic treatment reduced metabolic endotoxemia and the cecal content of LPS in both high-fat–fed and ob/ob mice. This effect was correlated with reduced glucose intolerance, body weight gain, fat mass development, lower inflammation, oxidative stress, and macrophage infiltration marker mRNA expression in visceral adipose tissue. Importantly, high-fat feeding strongly increased intestinal permeability and reduced the expression of genes coding for proteins of the tight junctions. Furthermore, the absence of CD14 in ob/ob CD14−/− mutant mice mimicked the metabolic and inflammatory effects of antibiotics. CONCLUSIONS—This new finding demonstrates that changes in gut microbiota controls metabolic endotoxemia, inflammation, and associated disorders by a mechanism that could increase intestinal permeability. It would thus be useful to develop strategies for changing gut microbiota to control, intestinal permeability, metabolic endotoxemia, and associated disorders.


Gut | 2009

Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability

Patrice D. Cani; Sam Possemiers; T. Van de Wiele; Yves Guiot; Amandine Everard; O. Rottier; Lucie Geurts; Damien Naslain; Audrey M. Neyrinck; Didier M. Lambert; Giulio G. Muccioli; Nathalie M. Delzenne

Background and aims: Obese and diabetic mice display enhanced intestinal permeability and metabolic endotoxaemia that participate in the occurrence of metabolic disorders. Our recent data support the idea that a selective increase of Bifidobacterium spp. reduces the impact of high-fat diet-induced metabolic endotoxaemia and inflammatory disorders. Here, we hypothesised that prebiotic modulation of gut microbiota lowers intestinal permeability, by a mechanism involving glucagon-like peptide-2 (GLP-2) thereby improving inflammation and metabolic disorders during obesity and diabetes. Methods: Study 1: ob/ob mice (Ob-CT) were treated with either prebiotic (Ob-Pre) or non-prebiotic carbohydrates as control (Ob-Cell). Study 2: Ob-CT and Ob-Pre mice were treated with GLP-2 antagonist or saline. Study 3: Ob-CT mice were treated with a GLP-2 agonist or saline. We assessed changes in the gut microbiota, intestinal permeability, gut peptides, intestinal epithelial tight-junction proteins ZO-1 and occludin (qPCR and immunohistochemistry), hepatic and systemic inflammation. Results: Prebiotic-treated mice exhibited a lower plasma lipopolysaccharide (LPS) and cytokines, and a decreased hepatic expression of inflammatory and oxidative stress markers. This decreased inflammatory tone was associated with a lower intestinal permeability and improved tight-junction integrity compared to controls. Prebiotic increased the endogenous intestinotrophic proglucagon-derived peptide (GLP-2) production whereas the GLP-2 antagonist abolished most of the prebiotic effects. Finally, pharmacological GLP-2 treatment decreased gut permeability, systemic and hepatic inflammatory phenotype associated with obesity to a similar extent as that observed following prebiotic-induced changes in gut microbiota. Conclusion: We found that a selective gut microbiota change controls and increases endogenous GLP-2 production, and consequently improves gut barrier functions by a GLP-2-dependent mechanism, contributing to the improvement of gut barrier functions during obesity and diabetes.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity

Amandine Everard; Clara Belzer; Lucie Geurts; Janneke P. Ouwerkerk; Céline Druart; Laure B. Bindels; Yves Guiot; Muriel Derrien; Giulio G. Muccioli; Nathalie M. Delzenne; Willem M. de Vos; Patrice D. Cani

Obesity and type 2 diabetes are characterized by altered gut microbiota, inflammation, and gut barrier disruption. Microbial composition and the mechanisms of interaction with the host that affect gut barrier function during obesity and type 2 diabetes have not been elucidated. We recently isolated Akkermansia muciniphila, which is a mucin-degrading bacterium that resides in the mucus layer. The presence of this bacterium inversely correlates with body weight in rodents and humans. However, the precise physiological roles played by this bacterium during obesity and metabolic disorders are unknown. This study demonstrated that the abundance of A. muciniphila decreased in obese and type 2 diabetic mice. We also observed that prebiotic feeding normalized A. muciniphila abundance, which correlated with an improved metabolic profile. In addition, we demonstrated that A. muciniphila treatment reversed high-fat diet-induced metabolic disorders, including fat-mass gain, metabolic endotoxemia, adipose tissue inflammation, and insulin resistance. A. muciniphila administration increased the intestinal levels of endocannabinoids that control inflammation, the gut barrier, and gut peptide secretion. Finally, we demonstrated that all these effects required viable A. muciniphila because treatment with heat-killed cells did not improve the metabolic profile or the mucus layer thickness. In summary, this study provides substantial insight into the intricate mechanisms of bacterial (i.e., A. muciniphila) regulation of the cross-talk between the host and gut microbiota. These results also provide a rationale for the development of a treatment that uses this human mucus colonizer for the prevention or treatment of obesity and its associated metabolic disorders.


Diabetologia | 2007

Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia.

Patrice D. Cani; Audrey M. Neyrinck; Francesca Fava; Claude Knauf; Rémy Burcelin; Kieran M. Tuohy; Glenn R. Gibson; Nathalie M. Delzenne

Aims/hypothesisRecent evidence suggests that a particular gut microbial community may favour occurrence of the metabolic diseases. Recently, we reported that high-fat (HF) feeding was associated with higher endotoxaemia and lower Bifidobacterium species (spp.) caecal content in mice. We therefore tested whether restoration of the quantity of caecal Bifidobacterium spp. could modulate metabolic endotoxaemia, the inflammatory tone and the development of diabetes.MethodsSince bifidobacteria have been reported to reduce intestinal endotoxin levels and improve mucosal barrier function, we specifically increased the gut bifidobacterial content of HF-diet-fed mice through the use of a prebiotic (oligofructose [OFS]).ResultsCompared with normal chow-fed control mice, HF feeding significantly reduced intestinal Gram-negative and Gram-positive bacteria including levels of bifidobacteria, a dominant member of the intestinal microbiota, which is seen as physiologically positive. As expected, HF-OFS-fed mice had totally restored quantities of bifidobacteria. HF-feeding significantly increased endotoxaemia, which was normalised to control levels in HF-OFS-treated mice. Multiple-correlation analyses showed that endotoxaemia significantly and negatively correlated with Bifidobacterium spp., but no relationship was seen between endotoxaemia and any other bacterial group. Finally, in HF-OFS-treated-mice, Bifidobacterium spp. significantly and positively correlated with improved glucose tolerance, glucose-induced insulin secretion and normalised inflammatory tone (decreased endotoxaemia, plasma and adipose tissue proinflammatory cytokines).Conclusions/interpretationTogether, these findings suggest that the gut microbiota contribute towards the pathophysiological regulation of endotoxaemia and set the tone of inflammation for occurrence of diabetes and/or obesity. Thus, it would be useful to develop specific strategies for modifying gut microbiota in favour of bifidobacteria to prevent the deleterious effect of HF-diet-induced metabolic diseases.


Current Pharmaceutical Design | 2009

The role of the gut microbiota in energy metabolism and metabolic disease

Patrice D. Cani; Nathalie M. Delzenne

Obesity is now classically characterized by a cluster of several metabolic disorders, and by a low grade inflammation. The evidence that the gut microbiota composition can be different between healthy and or obese and type 2 diabetic patients has led to the study of this environmental factor as a key link between the pathophysiology of metabolic diseases and the gut microbiota. Several mechanisms are proposed linking events occurring in the colon and the regulation of energy metabolism, such as i.e. the energy harvest from the diet, the synthesis of gut peptides involved in energy homeostasis (GLP-1, PYY...), and the regulation of fat storage. Moreover, the development of obesity and metabolic disorders following a high-fat diet may be associated to the innate immune system. Indeed, high-fat diet feeding triggers the development of obesity, inflammation, insulin resistance, type 2 diabetes and atherosclerosis by mechanisms dependent of the LPS and/or the fatty acids activation of the CD14/TLR4 receptor complex. Importantly, fat feeding is also associated with the development of metabolic endotoxemia in human subjects and participates in the low-grade inflammation, a mechanism associated with the development of atherogenic markers. Finally, data obtained in experimental models and human subjects are in favour of the fact that changing the gut microbiota (with prebiotics and/or probiotics) may participate in the control of the development of metabolic diseases associated with obesity. Thus, it would be useful to find specific strategies for modifying gut microbiota to impact on the occurrence of metabolic diseases.


Diabetes | 2011

Responses of Gut Microbiota and Glucose and Lipid Metabolism to Prebiotics in Genetic Obese and Diet-Induced Leptin-Resistant Mice

Amandine Everard; Vladimir Lazarevic; Muriel Derrien; Myriam Girard; Giulio M. Muccioli; Audrey M. Neyrinck; Sam Possemiers; Ann Van Holle; Patrice Francois; Willem M. de Vos; Nathalie M. Delzenne; Jacques Schrenzel; Patrice D. Cani

OBJECTIVE To investigate deep and comprehensive analysis of gut microbial communities and biological parameters after prebiotic administration in obese and diabetic mice. RESEARCH DESIGN AND METHODS Genetic (ob/ob) or diet-induced obese and diabetic mice were chronically fed with prebiotic-enriched diet or with a control diet. Extensive gut microbiota analyses, including quantitative PCR, pyrosequencing of the 16S rRNA, and phylogenetic microarrays, were performed in ob/ob mice. The impact of gut microbiota modulation on leptin sensitivity was investigated in diet-induced leptin-resistant mice. Metabolic parameters, gene expression, glucose homeostasis, and enteroendocrine-related L-cell function were documented in both models. RESULTS In ob/ob mice, prebiotic feeding decreased Firmicutes and increased Bacteroidetes phyla, but also changed 102 distinct taxa, 16 of which displayed a >10-fold change in abundance. In addition, prebiotics improved glucose tolerance, increased L-cell number and associated parameters (intestinal proglucagon mRNA expression and plasma glucagon-like peptide-1 levels), and reduced fat-mass development, oxidative stress, and low-grade inflammation. In high fat–fed mice, prebiotic treatment improved leptin sensitivity as well as metabolic parameters. CONCLUSIONS We conclude that specific gut microbiota modulation improves glucose homeostasis, leptin sensitivity, and target enteroendocrine cell activity in obese and diabetic mice. By profiling the gut microbiota, we identified a catalog of putative bacterial targets that may affect host metabolism in obesity and diabetes.


The American Journal of Clinical Nutrition | 2009

Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal

Patrice D. Cani; Elodie Lecourt; Evelyne M. Dewulf; Florence Sohet; Barbara D. Pachikian; Damien Naslain; Fabienne De Backer; Audrey M. Neyrinck; Nathalie M. Delzenne

BACKGROUND We have previously shown that gut microbial fermentation of prebiotics promotes satiety and lowers hunger and energy intake in humans. In rodents, these effects are associated with an increase in plasma gut peptide concentrations, which are involved in appetite regulation and glucose homeostasis. OBJECTIVE Our aim was to examine the effects of prebiotic supplementation on satiety and related hormones during a test meal for human volunteers by using a noninvasive micromethod for blood sampling to measure plasma gut peptide concentrations. DESIGN This study was a randomized, double-blind, parallel, placebo-controlled trial. A total of 10 healthy adults (5 men and 5 women) were randomly assigned to groups that received either 16 g prebiotics/d or 16 g dextrin maltose/d for 2 wk. Meal tolerance tests were performed in the morning to measure the following: hydrogen breath test, satiety, glucose homeostasis, and related hormone response. RESULTS We show that the prebiotic treatment increased breath-hydrogen excretion (a marker of gut microbiota fermentation) by approximately 3-fold and lowered hunger rates. Prebiotics increased plasma glucagon-like peptide 1 and peptide YY concentrations, whereas postprandial plasma glucose responses decreased after the standardized meal. The areas under the curve for plasma glucagon-like peptide 1 and breath-hydrogen excretion measured after the meal (0-60 min) were significantly correlated (r = 0.85, P = 0.007). The glucose response was inversely correlated with the breath-hydrogen excretion areas under the curve (0-180 min; r = -0.73, P = 0.02). CONCLUSION Prebiotic supplementation was associated with an increase in plasma gut peptide concentrations (glucagon-like peptide 1 and peptide YY), which may contribute in part to changes in appetite sensation and glucose excursion responses after a meal in healthy subjects.


British Journal of Nutrition | 1999

Functional food properties of non-digestible oligosaccharides : a consensus report from the ENDO project (DGXII AIRII-CT94-1095)

J Van Loo; John H. Cummings; Nathalie M. Delzenne; H Englyst; A Franck; M Hopkins; N Kok; G Macfarlane; D Newton; M Quigley; Marcel Roberfroid; T. van Vliet; E. Van Den Heuvel

This paper results from the final phase of the ENDO project (DGXII AIRII-CT94-1095), a European Commission-funded project on non-digestible oligosaccharides (NDO). All participants in the programme met to perform a consensus exercise on the possible functional food properties of NDO. Topics studied during the project (including a workshop on probiotics and prebiotics) and related aspects, for which considerable evidence has been generated recently, were evaluated on the basis of existing published scientific evidence. There was a general consensus that: (1) there is strong evidence for a prebiotic effect of NDO in human subjects. A prebiotic effect was defined as a food-induced increase in numbers and/or activity predominantly of bifidobacteria and lactic acid bacteria in the human large intestine; (2) there is strong evidence for the impact that NDO have on bowel habit; (3) there is promising evidence that consumption of inulin-type fructans may result in increased Ca absorption in man; (4) there are preliminary indications that inulin-type fructans interact with the functioning of lipid metabolism; (5) there is preliminary evidence in experimental animals of a preventive effect against colon cancer. Human nutrition studies are needed to substantiate these findings. It was concluded that the nutritional properties of NDO may prove to be a key issue in nutritional research in the future.


Nature Reviews Endocrinology | 2011

Targeting gut microbiota in obesity: effects of prebiotics and probiotics

Nathalie M. Delzenne; Audrey M. Neyrinck; Fredrik Bäckhed; Patrice D. Cani

At birth, the human colon is rapidly colonized by gut microbes. Owing to their vast number and their capacity to ferment nutrients and secrete bioactive compounds, these gastrointestinal microbes act as an environmental factor that affects the hosts physiology and metabolism, particularly in the context of obesity and its related metabolic disorders. Experiments that compared germ-free and colonized mice or analyzed the influence of nutrients that qualitatively change the composition of the gut microbiota (namely prebiotics) showed that gut microbes induce a wide variety of host responses within the intestinal mucosa and thereby control the guts barrier and endocrine functions. Gut microbes also influence the metabolism of cells in tissues outside of the intestines (in the liver and adipose tissue) and thereby modulate lipid and glucose homeostasis, as well as systemic inflammation, in the host. A number of studies describe characteristic differences between the composition and/or activity of the gut microbiota of lean individuals and those with obesity. Although these data are controversial, they suggest that specific phyla, classes or species of bacteria, or bacterial metabolic activities could be beneficial or detrimental to patients with obesity. The gut microbiota is, therefore, a potential nutritional and pharmacological target in the management of obesity and obesity-related disorders.

Collaboration


Dive into the Nathalie M. Delzenne's collaboration.

Top Co-Authors

Avatar

Patrice D. Cani

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Audrey M. Neyrinck

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Laure B. Bindels

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Barbara D. Pachikian

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Evelyne M. Dewulf

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Amandine Everard

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Florence Sohet

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Giulio G. Muccioli

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Céline Druart

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Lucie Geurts

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge