Barbara Dozza
University of Bologna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Dozza.
Biomaterials | 2010
Francesco Pieri; Enrico Lucarelli; Giuseppe Corinaldesi; Nicolò Nicoli Aldini; Milena Fini; Annapaola Parrilli; Barbara Dozza; Davide Donati; Claudio Marchetti
Previous in vivo studies have shown a limited potential for vertical bone regeneration using osteoconductive scaffolds alone. In the present study, we investigated whether the association of adipose-derived adult stem cells (ASCs) with anorganic bovine bone (ABB) scaffold improved bone formation and implant osseointegration in a vertical guided bone regeneration model. Two pre-formed titanium domes were placed on the calvaria of 12 rabbits. Four treatment modalities were evenly distributed among the 24 domes: ABB alone, and ABB containing 3 x 10(5), 3 x 10(6), or 3 x 10(7) cells/graft. After 1 month, the domes were removed and one titanium implant was placed into each augmented site. One month after the second operation, the animals were killed and biopsy specimens were examined by histomorphometric and micro-CT analyses. Results indicated that at all concentrations, the ASC-loaded groups showed significantly more new bone formation and higher mean values of bone-implant contact and bone density inside threads than the ABB group. Furthermore, ASCs demonstrated a dose-response relationship, with the highest dose chosen inducing more robust bone regeneration. This study suggests that the delivery of ASCs on ABB might effectively increase vertical bone regeneration and implant osseointegration, versus ABB alone.
Journal of Cellular Biochemistry | 2003
Paola Strocchi; Annalisa Pession; Barbara Dozza
Cdk5, a member of the cyclin‐dependent kinase (cdk) family, is predominately active in neurons, where its activity is tightly regulated by the binding of its neuronal activators p35 and p39. Cdk5 is implicated in regulating the proper neuronal function; a deregulation of cdk5 has been found associated with Alzheimers disease and amyotrophic lateral sclerosis. As oxidative stress products have been seen co‐localized with pathological hallmarks of neurodegenerative diseases, we studied the effect of oxidative stress on the cdk5 enzyme in human neuroblastoma IMR‐32 cells. We evaluated the effects of 4‐hydroxynonenal and Ascorbate plus FeSO4 on cdk5 activity and on the expression of cdk5 and p35 proteins. We report here that oxidative stress stimulates cdk5 activity and induces an upregulation of its regulatory and catalytic subunit expression in IMR‐32 vital cells, showing that the cdk5 enzyme is involved in the signaling pathway activated by oxidative stress.
Journal of Bone and Joint Surgery-british Volume | 2012
Tommaso Frisoni; Luca Cevolani; A. Giorgini; Barbara Dozza; Davide Donati
We retrospectively reviewed 101 consecutive patients with 114 femoral tumours treated by massive bone allograft at our institution between 1986 and 2005. There were 49 females and 52 males with a mean age of 20 years (4 to 74). At a median follow-up of 9.3 years (2 to 19.8), 36 reconstructions (31.5%) had failed. The allograft itself failed in 27 reconstructions (24%). Mechanical complications such as delayed union, fracture and failure of fixation were studied. The most adverse factor on the outcome was the use of intramedullary nails, followed by post-operative chemotherapy, resection length > 17 cm and age > 18 years at the time of intervention. The simultaneous use of a vascularised fibular graft to protect the allograft from mechanical complications improved the outcome, but the use of intramedullary cementing was not as successful. In order to improve the strength of the reconstruction and to advance the biology of host-graft integration, we suggest avoiding the use of intramedullary nails and titanium plates, but instead using stainless steel plates, as these gave better results. The use of a supplementary vascularised fibular graft should be strongly considered in adult patients with resection > 17 cm and in those who require post-operative chemotherapy.
Journal of Neurochemistry | 2004
Barbara Dozza; Mark A. Smith; George Perry; Massimo Tabaton; Paola Strocchi
The potential role of 4‐hydroxynonenal (HNE), a major product of membrane lipid peroxidation, in regulating glycogen synthase kinase‐3β (GSK3β) activity was examined in human neuroblastoma IMR‐32 cells. The inhibition of GSK3β activity by HNE was observed by in vitro kinase assays with two substrates, the synthetic glycogen synthase peptide‐2 and the human recombinant tau. GSK3β activity is regulated by Ser9 (inhibitory) and Tyr216 (stimulatory) phosphorylation. By using specific activity‐dependent phospho‐antibodies, immunoblot analysis revealed that HNE induces an increase in phosphorylation of GSK3β in Ser9, enhancing basal phosphatidylinositol 3‐kinase (PI3K)/AKT and extracellular signal‐regulated kinase 2 (ERK2) signalling pathways. Ser9‐GSK3β phosphorylation induced by HNE was abolished by treatment with LY294002 or U0126, two inhibitors of PI3K/AKT and ERK pathways, respectively. These experiments provide evidence for a crucial role of the PI3K/AKT and ERK2 pathways as intracellular targets of HNE that mediate the inhibition of GSK3β activity in regulating cellular response to HNE in viable cells under conditions in which membrane lipid peroxidation occurs. These data support a key role for GSK3β as a mediator of the signalling pathways activated by oxidative stress, and therefore it may be included among the redox‐sensitive enzymes.
Journal of Bone and Joint Surgery, American Volume | 2013
Michela Pierini; Claudia Di Bella; Barbara Dozza; Tommaso Frisoni; Elisa Martella; Chiara Bellotti; Daniel Remondini; Enrico Lucarelli; Sandro Giannini; Davide Donati
BACKGROUND The clinical application of freshly isolated connective-tissue progenitors, as well as the potential preparation of culture-expanded mesenchymal stem cell populations for therapeutic applications, will benefit from clinical methods that maximize the yield of the starting population. We compared the number of cells, concentration, and prevalence of colony-founding connective-tissue progenitors from the anterior and posterior iliac crest. In addition, we compared the expansion kinetics and multilineage differentiation potential of their culture-expanded progeny when processed to form mesenchymal stem cells. METHODS Marrow aspirate was collected from both the anterior and posterior iliac crest of twenty-two patients. The concentration and prevalence of colony-founding connective-tissue progenitors were estimated with use of a colony formation assay. The expansion kinetics and multilineage differentiation potential of the culture-expanded mesenchymal stem cell populations derived from these starting samples were compared. RESULTS The yield of colony-founding connective-tissue progenitors was 1.6 times greater in the posterior compared with the anterior iliac crest. No differences were found with respect to the viability, phenotype, expansion kinetics, or multilineage differentiation potential of mesenchymal stem cell populations derived from these two sites. CONCLUSIONS The concentration and yield of colony-founding connective-tissue progenitors were greater when aspirate was obtained from the posterior compared with the anterior iliac crest, whereas the biological potential of the cells derived from these sites appeared comparable. CLINICAL RELEVANCE The harvesting of bone marrow from the posterior iliac crest appears to be preferred, as it provided a modestly higher concentration of colony-founding connective-tissue progenitors than comparable aspirate from the anterior iliac crest.
Journal of Controlled Release | 2013
Serena Duchi; Giovanna Sotgiu; Enrico Lucarelli; Marco Ballestri; Barbara Dozza; Spartaco Santi; A. Guerrini; Paolo Dambruoso; Sandro Giannini; Davide Donati; Claudia Ferroni; Greta Varchi
Mesenchymal stem cells (MSC) have the unique ability to home and engraft in tumor stroma. These features render them potentially a very useful tool as targeted delivery vehicles which can deliver therapeutic drugs to the tumor stroma. In the present study, we investigate whether fluorescent core-shell PMMA nanoparticles (FNPs) post-loaded with a photosensitizer, namely meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS) and uploaded by MSC could trigger osteosarcoma (OS) cell death in vitro upon specific photoactivation. In co-culture studies we demonstrate using laser confocal microscopy and time lapse imaging, that only after laser irradiation MSC loaded with photosensitizer-coated fluorescent NPs (TPPS@FNPs) undergo cell death and release reactive oxygen species (ROS) which are sufficient to trigger cell death of all OS cells in the culture. These results encourage further studies aimed at proving the efficacy of this novel tri-component system for PDT applications.
Injury-international Journal of The Care of The Injured | 2008
Davide Donati; C. Di Bella; Enrico Lucarelli; Barbara Dozza; Tommaso Frisoni; N. Nicoli Aldini; Roberto Giardino
UNLABELLED Massive bone allografts are frequently used in orthopaedic reconstructive surgery. However the failure rate at long term follow-up is around 25%. AIM Stimulation of allograft incorporation. MATERIALS AND METHODS In order to stimulate bone remodeling of an allograft we applied recombinant human osteogenic protein-1 (rh-OP-1, also know as bone morphogenetic protein-7, BMP-7) to a long bone critical size defect sheep model. In nine sheep we created a 3 cm osteoperiosteal metatarsal defect replaced with a structural allograft alone (control group, 4 animals), or an allograft added with rh-BMP-7 (BMP group, 5 animals). Radiographic, mechanical, histological and histomorphometric analysis were performed. RESULTS X-rays in the BMP group showed a better and faster callus formation, compared to the control group within the first 8 weeks after surgery. After 16 weeks there was a higher evidence of bone remodeling in the BMP group. Radiographic healing at junction sites was more evident in the BMP group at 4, 8 and 16 weeks. Mechanical testing on screw extraction showed no statistical differences between the two groups and histomorphometry showed no difference in terms of newly formed bone inside the allograft as well. The resorption rate of the graft was higher in the BMP group in comparison to the control group. The penetration of newly formed vessels was significantly higher in the BMP group. CONCLUSIONS These findings indicate that BMP-7 added to a structural bone allograft inducing early remodeling of the graft through stimulation of neo-angiogenesis and osteoclastic activity, without negative effects in mechanical strength and clinical outcome.
Journal of Orthopaedic Research | 2011
Barbara Dozza; Claudia Di Bella; Enrico Lucarelli; Gianluca Giavaresi; Milena Fini; Pier Luigi Tazzari; Sandro Giannini; Davide Donati
The objective of this study was to evaluate whether mesenchymal stem cells (MSC) and platelet lysate (PL) seeded in a fibrin or collagen scaffold could improve the new bone (NB) formation around an uncemented hip prosthesis stem in a sheep model. In vitro expanded MSC were suspended in PL and either mixed with collagen or fibrin gel as delivery vehicle. The cell–gel composites were inserted inside the femoral canal, then the prosthesis was press‐fit inserted inside the femur. Identical procedures were performed in a control group, but only the prosthesis was implanted. Histomorphometrical analysis performed 4 months after surgery indicated that the newly formed bone inside the medullary canal, between the inner cortex and the prosthetic stem, was significantly higher in the MSC–PL–collagen group (mean 18.7 ± 4.5%) and in the MSC–PL–fibrin group (mean 18.8 ± 15.2%) when compared to the control group (mean 4.6 ± 2.0%). There was a significantly higher bone–prosthesis contact in the MSC–PL–collagen group (mean 2.7 ± 2.6%) and in the MSC–PL–fibrin group (mean 2.3 ± 3.1%) compared to the control group (mean 0.2 ± 0.1%). The results indicate that MSC and PL in a fibrin or collagen scaffold can promote NB formation around an uncemented hip prosthesis stem.
Cytotherapy | 2012
Michela Pierini; Barbara Dozza; Enrico Lucarelli; Pier Luigi Tazzari; Francesca Ricci; Daniel Remondini; Claudia Di Bella; Sandro Giannini; Davide Donati
BACKGROUND AIMS Bone marrow (BM) mesenchymal stromal cells (MSC) have been identified as a source of pluripotent stem cells used in clinical practice to regenerate damaged tissues. BM MSC are commonly isolated from BM by density-gradient centrifugation. This process is an open system that increases the risk of sample contamination. It is also time consuming and requires technical expertise that may result in variability regarding cellular recovery. The BD Vacutainer® Cell Preparation Tube™ (CPT) was conceived to separate mononuclear cells from peripheral blood. The main goal of this study was to verify whether MSC could be isolated from BM using the CPT. METHODS BM was harvested, divided into two equal aliquots and processed using either CPT or a Ficoll-Paque™ PREMIUM density gradient. Both methods were compared regarding cell recovery, viability, proliferation, differentiation capacities and the presence of MSC progenitors. RESULTS Similar numbers of mononuclear cells were isolated from BM when comparing the two methods under study. No differences were found in terms of phenotypic characterization, viability, kinetics and lineage differentiation potential of MSC derived by CPT or Ficoll. Surprisingly, a fibroblast-colony-forming unit (CFU-F) assay indicated that, with CPT, the number of MSC progenitors was 1.8 times higher compared with the Ficoll gradient separation. CONCLUSIONS The CPT method is able to isolate MSC efficiently from BM, allowing the enrichment of MSC precursors.
Biochimica et Biophysica Acta | 2011
Sofia Avnet; Rosanna Pallotta; Francesca Perut; Nicola Baldini; Maria Gabriela Pittis; Anita Saponari; Enrico Lucarelli; Barbara Dozza; Tiziana Greggi; Nadir M. Maraldi; Cristina Capanni; Elisabetta Mattioli; Marta Columbaro; Giovanna Lattanzi
Mandibuloacral dysplasia type A (MADA) is a rare disease caused by mutations in the LMNA gene encoding A type lamins. Patients affected by mandibuloacral dysplasia type A suffer from partial lipodystrophy, skin abnormalities and accelerated aging. Typical of mandibuloacral dysplasia type A is also bone resorption at defined districts including terminal phalanges, mandible and clavicles. Little is known about the biological mechanism underlying osteolysis in mandibuloacral dysplasia type A. In the reported study, we analyzed an osteoblast primary culture derived from the cervical vertebrae of a mandibuloacral dysplasia type A patient bearing the homozygous R527H LMNA mutation. Mandibuloacral dysplasia type A osteoblasts showed nuclear abnormalities typical of laminopathic cells, but they proliferated in culture and underwent differentiation upon stimulation with dexamethasone and beta-glycerophosphate. Differentiated osteoblasts showed proper production of bone mineral matrix until passage 8 in culture, suggesting a good differentiation activity. In order to evaluate whether mandibuloacral dysplasia type A osteoblast-derived factors affected osteoclast differentiation or activity, we used a conditioned medium from mandibuloacral dysplasia type A or control cultures to treat normal human peripheral blood monocytes and investigated whether they were induced to differentiate into osteoclasts. A higher osteoclast differentiation and matrix digestion rate was obtained in the presence of mandibuloacral dysplasia type A osteoblast medium with respect to normal osteoblast medium. Further, TGFbeta 2 and osteoprotegerin expression were enhanced in mandibuloacral dysplasia type A osteoblasts while the RANKL/osteoprotegerin ratio was diminished. Importantly, inhibition of TGFbeta 2 by a neutralizing antibody abolished the effect of mandibuloacral dysplasia type A conditioned medium on osteoclast differentiation. These data argue in favor of an altered bone turnover in mandibuloacral dysplasia type A, caused by upregulation of bone-derived stimulatory cytokines, which activate non-canonical differentiation stimuli. In this context, TGFbeta 2 appears as a major player in the osteolytic process that affects mandibuloacral dysplasia type A patients.