Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara E. Corkey is active.

Publication


Featured researches published by Barbara E. Corkey.


The EMBO Journal | 2008

Fission and selective fusion govern mitochondrial segregation and elimination by autophagy

Gilad Twig; Alvaro A. Elorza; Anthony J.A. Molina; Hibo Mohamed; Jakob D. Wikstrom; Gil Walzer; Linsey Stiles; Sarah E. Haigh; Steve Katz; Guy Las; Joseph Alroy; Min Wu; Bénédicte F. Py; Junying Yuan; Jude T. Deeney; Barbara E. Corkey; Orian S. Shirihai

Accumulation of depolarized mitochondria within β‐cells has been associated with oxidative damage and development of diabetes. To determine the source and fate of depolarized mitochondria, individual mitochondria were photolabeled and tracked through fusion and fission. Mitochondria were found to go through frequent cycles of fusion and fission in a ‘kiss and run’ pattern. Fission events often generated uneven daughter units: one daughter exhibited increased membrane potential (Δψm) and a high probability of subsequent fusion, while the other had decreased membrane potential and a reduced probability for a fusion event. Together, this pattern generated a subpopulation of non‐fusing mitochondria that were found to have reduced Δψm and decreased levels of the fusion protein OPA1. Inhibition of the fission machinery through DRP1K38A or FIS1 RNAi decreased mitochondrial autophagy and resulted in the accumulation of oxidized mitochondrial proteins, reduced respiration and impaired insulin secretion. Pulse chase and arrest of autophagy at the pre‐proteolysis stage reveal that before autophagy mitochondria lose Δψm and OPA1, and that overexpression of OPA1 decreases mitochondrial autophagy. Together, these findings suggest that fission followed by selective fusion segregates dysfunctional mitochondria and permits their removal by autophagy.


Methods in Enzymology | 1969

[65] Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods☆

John R. Williamson; Barbara E. Corkey

Publisher Summary This chapter is based on the assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods. An eppendorf fluorometer or a metabolite fluorometer are instruments capable of giving a full-scale deflection of the recorder with 0.25μM NADH, with a noise level less than 2%. At such high sensitivities, the full progress of each enzymatic reaction is recorded. The following accounts for the majority of difficulties and inaccuracies commonly encountered with fluorometrie enzyme methods: All solutions should be dust and particle free; the cuvettes should be temperature equilibrated; Particular care should be taken to avoid contamination of solutions with enzymes, or cross-contamination; Fresh enzyme solution must be made each day; Solutions of pyridine nucleotides are best prepared each day and stored on ice. NAD+ and NADP+ are most stable in a slightly acid solution, and may be diluted with distilled water; and all standard solutions should be neutralized, and assayed spectrophotometrically on the day of use. Metabolic intermediates other than reduced pyridine nueleotides, total CoA, fatty acyl-CoA, and fatty acylearnitine compounds are measured in neutralized perchloric acid extracts of tissues. Perchloric acid is generally more convenient to use than trichloroacetic acid for the extraction, because it may be removed by precipitation as the potassium salt.


Diabetes | 1996

Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM?

Marc Prentki; Barbara E. Corkey

Widely held theories of the pathogenesis of obesity-associated NIDDM have implicated apparently incompatible events as seminal: 1) insulin resistance in muscle, 2) abnormal secretion of insulin, and 3) increases in intra-abdominal fat. Altered circulating or tissue lipids are characteristic features of obesity and NIDDM. The etiology of these defectss is not known. In this perspective, we propose that the same metabolic events, elevated malonyl-CoA and long-chain acyl-CoA (LC-CoA), in various tissues mediate, in part, the pleiotropic alterations characteristic of obesity and NIDDM. We review the evidence in support of the emerging concept that malonyl-CoA and LC-CoA act as metabolic coupling factors in β-cell signal transduction, linking fuel metabolism to insulin secretion. We suggest that acetyl-CoA carboxylase, which synthesizes malonyl-CoA, a “signal of plenty,” and carnitine palmitoyl transferase 1, which is regulated by it, may perform as fuel sensors in the β-cell, integrating the concentrations of all circulating fuel stimuli in the β-cell as well as in muscle, liver, and adipose tissue. The target effectors of LC-CoA may include protein kinase C sub-types, complex lipid formation, genes encoding metabolic enzymes or transduction factors, and protein acylation. We support the concept that only under conditions in which both glucose and lipids are plentiful will the metabolic abnormality, which may be termed glucolipoxia, become apparent. If our hypothesis is correct that common signaling abnormalities in the metabolism of malonyl-CoA and LC-CoA contribute to altered insulin release and sensitivity, it offers a novel explanation for the presence of variable combinations of these defects in individuals with differing genetic backgrounds and for the fact that it has been difficult to determine whether one or the other is the primary event.


Diabetes | 2007

Reactive Oxygen Species as a Signal in Glucose-Stimulated Insulin Secretion

Jingbo Pi; Yushi Bai; Qiang Zhang; Victoria A. Wong; Lisa M. Floering; Kiefer W. Daniel; Jeffrey M. Reece; Jude T. Deeney; Melvin E. Andersen; Barbara E. Corkey; Sheila Collins

One of the unique features of β-cells is their relatively low expression of many antioxidant enzymes. This could render β-cells susceptible to oxidative damage but may also provide a system that is sensitive to reactive oxygen species as signals. In isolated mouse islets and INS-1(832/13) cells, glucose increases intracellular accumulation of H2O2. In both models, insulin secretion could be stimulated by provision of either exogenous H2O2 or diethyl maleate, which raises intracellular H2O2 levels. Provision of exogenous H2O2 scavengers, including cell permeable catalase and N-acetyl-l-cysteine, inhibited glucose-stimulated H2O2 accumulation and insulin secretion (GSIS). In contrast, cell permeable superoxide dismutase, which metabolizes superoxide into H2O2, had no effect on GSIS. Because oxidative stress is an important risk factor for β-cell dysfunction in diabetes, the relationship between glucose-induced H2O2 generation and GSIS was investigated under various oxidative stress conditions. Acute exposure of isolated mouse islets or INS-1(832/13) cells to oxidative stressors, including arsenite, 4-hydroxynonenal, and methylglyoxal, led to decreased GSIS. This impaired GSIS was associated with increases in a battery of endogenous antioxidant enzymes. Taken together, these findings suggest that H2O2 derived from glucose metabolism is one of the metabolic signals for insulin secretion, whereas oxidative stress may disturb its signaling function.


Nature Medicine | 2008

Dual role of proapoptotic BAD in insulin secretion and beta cell survival

Nika N. Danial; Loren D. Walensky; Chen-Yu Zhang; Cheol Soo Choi; Jill K. Fisher; Anthony J A Molina; Sandeep Robert Datta; Kenneth Pitter; Gregory H. Bird; Jakob D. Wikstrom; J T Deeney; Kirsten Robertson; Joel Morash; Ameya Kulkarni; Susanne Neschen; Sheene Kim; Michael E. Greenberg; Barbara E. Corkey; Orian S. Shirihai; Gerald I. Shulman; Bradford B. Lowell; Stanley J. Korsmeyer

The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeable, hydrocarbon-stapled BAD BH3 helices that target glucokinase, restore glucose-driven mitochondrial respiration and correct the insulin secretory response in Bad-deficient islets. Our studies uncover an alternative target and function for the BAD BH3 domain and emphasize the therapeutic potential of phosphorylated BAD BH3 mimetics in selectively restoring beta cell function. Furthermore, we show that BAD regulates the physiologic adaptation of beta cell mass during high-fat feeding. Our findings provide genetic proof of the bifunctional activities of BAD in both beta cell survival and insulin secretion.


Diabetes | 2009

Mitochondrial Networking Protects β-Cells From Nutrient-Induced Apoptosis

Anthony J.A. Molina; Jakob D. Wikstrom; Linsey Stiles; Guy Las; Hibo Mohamed; Alvaro A. Elorza; Gil Walzer; Gilad Twig; Steve Katz; Barbara E. Corkey; Orian S. Shirihai

OBJECTIVE Previous studies have reported that β-cell mitochondria exist as discrete organelles that exhibit heterogeneous bioenergetic capacity. To date, networking activity, and its role in mediating β-cell mitochondrial morphology and function, remains unclear. In this article, we investigate β-cell mitochondrial fusion and fission in detail and report alterations in response to various combinations of nutrients. RESEARCH DESIGN AND METHODS Using matrix-targeted photoactivatable green fluorescent protein, mitochondria were tagged and tracked in β-cells within intact islets, as isolated cells and as cell lines, revealing frequent fusion and fission events. Manipulations of key mitochondrial dynamics proteins OPA1, DRP1, and Fis1 were tested for their role in β-cell mitochondrial morphology. The combined effects of free fatty acid and glucose on β-cell survival, function, and mitochondrial morphology were explored with relation to alterations in fusion and fission capacity. RESULTS β-Cell mitochondria are constantly involved in fusion and fission activity that underlies the overall morphology of the organelle. We find that networking activity among mitochondria is capable of distributing a localized green fluorescent protein signal throughout an isolated β-cell, a β-cell within an islet, and an INS1 cell. Under noxious conditions, we find that β-cell mitochondria become fragmented and lose their ability to undergo fusion. Interestingly, manipulations that shift the dynamic balance to favor fusion are able to prevent mitochondrial fragmentation, maintain mitochondrial dynamics, and prevent apoptosis. CONCLUSIONS These data suggest that alterations in mitochondrial fusion and fission play a critical role in nutrient-induced β-cell apoptosis and may be involved in the pathophysiology of type 2 diabetes.


Toxicology and Applied Pharmacology | 2010

ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function

Jingbo Pi; Qiang Zhang; Jingqi Fu; Courtney G. Woods; Yongyong Hou; Barbara E. Corkey; Sheila Collins; Melvin E. Andersen

This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H(2)O(2), act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function.


Pediatric Research | 1983

Medium-chain acyl-CoA dehydrogenase deficiency in children with non-ketotic hypoglycemia and low carnitine levels.

Charles A. Stanley; Daniel E. Hale; Paul M. Coates; Carole L. Hall; Barbara E. Corkey; William Yang; Richard I. Kelley; Elisa L Gonzales; John R. Williamson; Lester Baker

Summary: Three children in two families presented in early childhood with episodes of illness associated with fasting which resembled Reyes syndrome: coma, hypoglycemia, hyperammonemia, and fatty liver. One child died with cerebral edema during an episode. Clinical studies revealed an absence of ketosis on fasting (plasma beta-hydroxybutyrate < 0.4 mmole/liter) despite elevated levels of free fatty acids (2.6–4.2 mmole/liter) which suggested that hepatic fatty acid oxidation was impaired. Urinary dicarboxylic acids were elevated during illness or fasting. Total carnitine levels were low in plasma (18–25 μmole/liter), liver (200–500 nmole/g), and muscle (500–800 nmole/g); however, treatment with L-carnitine failed to correct the defect in ketogenesis. Studies on ketone production from fatty acid substrates by liver tissue in vitro showed normal rates from short-chain fatty acids, but very low rates from all medium and long-chain fatty acid substrates. These results suggested that the defect was in the mid-portion of the intramitochondrial beta-oxidation pathway at the medium- chain acyl-CoA dehydrogenase step. A new assay for the electron transfer flavoprotein-linked acyl-CoA dehydrogenases was used to test this hypothesis. This assay follows the decrease in electron transfer flavoprotein fluorescence as it is reduced by acyl-CoA-acyl-CoA dehydrogenase complex. Results with octanoyl-CoA as substrate indicated that patients had less than 2.5% normal activity of medium-chain acyl-CoA dehydrogenase. The activities of short-chain and isovaleryl acyl-CoA dehydrogenases were normal; the activity of long-chain acyl-CoA dehydrogenase was one-third normal.These results define a previously unrecognized inherited metabolic disorder of fatty acid oxidation due to deficiency of medium-chain acyl-CoA dehydrogenase. The carnitine deficiency in these patients appears to be a secondary consequence of their defect in fatty acid oxidation. It is possible that other patients with “systemic carnitine deficiency,” who fail to respond to carnitine therapy, may also have defects in fatty acid oxidation similar to medium-chain acyl-CoA dehydrogenase deficiency.


Diabetologia | 1997

Signal transduction mechanisms in nutrient-induced insulin secretion

Marc Prentki; Keith Tornheim; Barbara E. Corkey

Summary The knowledge of the mechanism whereby glucose and other fuel stimuli promote the release of insulin by the pancreatic beta cell remains fragmentary. The closure of metabolically sensitive K+ channels and a rise in cytosolic free Ca2+ are key features of beta-cell metabolic signal transduction. However, these two signalling events do not account for the dose dependence of glucose-induced insulin secretion. In fact, recent evidence indicates that there are KATP channel and Ca2+ independent pathway(s) of beta-cell activation which remain to be defined. In this review, we have limited our attention to the recent developments in our understanding of the mode of action of nutrient secretagogues. A particular emphasis is placed in summarising the evidence in support of two new concepts: 1) oscillations in the glycolytic pathway and beta-cell metabolism contribute to the oscillatory nature of beta-cell ionic events and insulin secretion; 2) malonyl-CoA and long chain acyl-CoA esters may act as metabolic coupling factors in beta-cell signalling. Finally, we propose that the altered expression of genes encoding enzymes in the pathway of malonyl-CoA formation and fatty acid oxidation contributes to the beta-cell insensitivity to glucose in some patients with non-insulin-dependent diabetes mellitus. [Diabetologia (1997) 40: S 32–S 41]


Journal of Nutrition | 2000

The Role of Long-Chain Fatty Acyl-CoA Esters in β-Cell Signal Transduction

Barbara E. Corkey; Jude T. Deeney; Gordon C. Yaney; Keith Tornheim; Marc Prentki

Glucose-induced insulin secretion is associated with inhibition of free fatty acid (FFA) oxidation, increased esterification and complex lipid formation by pancreatic beta-cells. Abundant evidence favors a role for cytosolic long-chain acyl-CoA (LC-CoA), including the rapid rise in malonyl CoA, the inhibitory effect of hydroxycitrate or acetyl CoA carboxylase knockout, both of which prevent malonyl CoA formation, and the stimulatory effect of exogenous FFA. On the other hand, some evidence opposes the concept, including the fall in total LC-CoA levels in response to glucose, the stimulatory effect of LC-CoA on K(ATP) channels and the lack of inhibition of glucose-stimulated secretion either by overexpression of malonyl CoA decarboxylase, which markedly lowers malonyl CoA levels, or by triacsin C, which blocks FFA conversion to LC-CoA. Alternative explanations for these data are presented. A revised model of nutrient-stimulated secretion involving two arms of signal transduction that occur simultaneously is proposed. One arm depends on modulation of the K(ATP) channel evoked by changes in the ATP/ADP ratio. The other arm depends upon anaplerotic input into the tricarboxylic acid cycle, generation of excess citrate, and increases in cytosolic malonyl-CoA. Input from this arm is increased LC-CoA. Signaling through both arms would be required for normal secretion. LC-CoA esters and products formed from them are potent regulators of enzymes and channels. It is hypothesized that their elevations directly modulate the activity of enzymes, genes and various beta-cell functions or modify the acylation state of key proteins involved in regulation of ion channels and exocytosis.

Collaboration


Dive into the Barbara E. Corkey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Prentki

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon C. Yaney

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge