Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jude T. Deeney is active.

Publication


Featured researches published by Jude T. Deeney.


The EMBO Journal | 2008

Fission and selective fusion govern mitochondrial segregation and elimination by autophagy

Gilad Twig; Alvaro A. Elorza; Anthony J.A. Molina; Hibo Mohamed; Jakob D. Wikstrom; Gil Walzer; Linsey Stiles; Sarah E. Haigh; Steve Katz; Guy Las; Joseph Alroy; Min Wu; Bénédicte F. Py; Junying Yuan; Jude T. Deeney; Barbara E. Corkey; Orian S. Shirihai

Accumulation of depolarized mitochondria within β‐cells has been associated with oxidative damage and development of diabetes. To determine the source and fate of depolarized mitochondria, individual mitochondria were photolabeled and tracked through fusion and fission. Mitochondria were found to go through frequent cycles of fusion and fission in a ‘kiss and run’ pattern. Fission events often generated uneven daughter units: one daughter exhibited increased membrane potential (Δψm) and a high probability of subsequent fusion, while the other had decreased membrane potential and a reduced probability for a fusion event. Together, this pattern generated a subpopulation of non‐fusing mitochondria that were found to have reduced Δψm and decreased levels of the fusion protein OPA1. Inhibition of the fission machinery through DRP1K38A or FIS1 RNAi decreased mitochondrial autophagy and resulted in the accumulation of oxidized mitochondrial proteins, reduced respiration and impaired insulin secretion. Pulse chase and arrest of autophagy at the pre‐proteolysis stage reveal that before autophagy mitochondria lose Δψm and OPA1, and that overexpression of OPA1 decreases mitochondrial autophagy. Together, these findings suggest that fission followed by selective fusion segregates dysfunctional mitochondria and permits their removal by autophagy.


Diabetes | 2007

Reactive Oxygen Species as a Signal in Glucose-Stimulated Insulin Secretion

Jingbo Pi; Yushi Bai; Qiang Zhang; Victoria A. Wong; Lisa M. Floering; Kiefer W. Daniel; Jeffrey M. Reece; Jude T. Deeney; Melvin E. Andersen; Barbara E. Corkey; Sheila Collins

One of the unique features of β-cells is their relatively low expression of many antioxidant enzymes. This could render β-cells susceptible to oxidative damage but may also provide a system that is sensitive to reactive oxygen species as signals. In isolated mouse islets and INS-1(832/13) cells, glucose increases intracellular accumulation of H2O2. In both models, insulin secretion could be stimulated by provision of either exogenous H2O2 or diethyl maleate, which raises intracellular H2O2 levels. Provision of exogenous H2O2 scavengers, including cell permeable catalase and N-acetyl-l-cysteine, inhibited glucose-stimulated H2O2 accumulation and insulin secretion (GSIS). In contrast, cell permeable superoxide dismutase, which metabolizes superoxide into H2O2, had no effect on GSIS. Because oxidative stress is an important risk factor for β-cell dysfunction in diabetes, the relationship between glucose-induced H2O2 generation and GSIS was investigated under various oxidative stress conditions. Acute exposure of isolated mouse islets or INS-1(832/13) cells to oxidative stressors, including arsenite, 4-hydroxynonenal, and methylglyoxal, led to decreased GSIS. This impaired GSIS was associated with increases in a battery of endogenous antioxidant enzymes. Taken together, these findings suggest that H2O2 derived from glucose metabolism is one of the metabolic signals for insulin secretion, whereas oxidative stress may disturb its signaling function.


Science | 1996

PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic beta cells.

Lena Eliasson; Erik Renström; Carina Ämmälä; Per-Olof Berggren; Alejandro M. Bertorello; Krister Bokvist; Alexander V. Chibalin; Jude T. Deeney; Peter R. Flatt; Jakob Gäbel; Jesper Gromada; Olof Larsson; Per Lindström; Christopher J. Rhodes; Patrik Rorsman

Hypoglycemic sulfonylureas represent a group of clinically useful antidiabetic compounds that stimulate insulin secretion from pancreatic β cells. The molecular mechanisms involved are not fully understood but are believed to involve inhibition of potassium channels sensitive to adenosine triphosphate (KATP channels) in the β cell membrane, causing membrane depolarization, calcium influx, and activation of the secretory machinery. In addition to these effects, sulfonylureas also promoted exocytosis by direct interaction with the secretory machinery not involving closure of the plasma membrane KATP channels. This effect was dependent on protein kinase C (PKC) and was observed at therapeutic concentrations of sulfonylureas, which suggests that it contributes to their hypoglycemic action in diabetics.


Journal of Nutrition | 2000

The Role of Long-Chain Fatty Acyl-CoA Esters in β-Cell Signal Transduction

Barbara E. Corkey; Jude T. Deeney; Gordon C. Yaney; Keith Tornheim; Marc Prentki

Glucose-induced insulin secretion is associated with inhibition of free fatty acid (FFA) oxidation, increased esterification and complex lipid formation by pancreatic beta-cells. Abundant evidence favors a role for cytosolic long-chain acyl-CoA (LC-CoA), including the rapid rise in malonyl CoA, the inhibitory effect of hydroxycitrate or acetyl CoA carboxylase knockout, both of which prevent malonyl CoA formation, and the stimulatory effect of exogenous FFA. On the other hand, some evidence opposes the concept, including the fall in total LC-CoA levels in response to glucose, the stimulatory effect of LC-CoA on K(ATP) channels and the lack of inhibition of glucose-stimulated secretion either by overexpression of malonyl CoA decarboxylase, which markedly lowers malonyl CoA levels, or by triacsin C, which blocks FFA conversion to LC-CoA. Alternative explanations for these data are presented. A revised model of nutrient-stimulated secretion involving two arms of signal transduction that occur simultaneously is proposed. One arm depends on modulation of the K(ATP) channel evoked by changes in the ATP/ADP ratio. The other arm depends upon anaplerotic input into the tricarboxylic acid cycle, generation of excess citrate, and increases in cytosolic malonyl-CoA. Input from this arm is increased LC-CoA. Signaling through both arms would be required for normal secretion. LC-CoA esters and products formed from them are potent regulators of enzymes and channels. It is hypothesized that their elevations directly modulate the activity of enzymes, genes and various beta-cell functions or modify the acylation state of key proteins involved in regulation of ion channels and exocytosis.


Developmental Cell | 2003

Suppression of β Cell Energy Metabolism and Insulin Release by PGC-1α

J. Cliff Yoon; Gang Xu; Jude T. Deeney; Shao Nian Yang; James Rhee; Pere Puigserver; Adah R. Levens; Ruojing Yang; Chen Yu Zhang; Bradford B. Lowell; Per-Olof Berggren; Christopher B. Newgard; Susan Bonner-Weir; Gordon C. Weir; Bruce M. Spiegelman

beta cell dysfunction is an important component of type 2 diabetes, but the molecular basis for this defect is poorly understood. The transcriptional coactivator PGC-1alpha mRNA and protein levels are significantly elevated in islets from multiple animal models of diabetes; adenovirus-mediated expression of PGC-1alpha to levels similar to those present in diabetic rodents produces a marked inhibition of glucose-stimulated insulin secretion from islets in culture and in live mice. This inhibition coincides with changes in metabolic gene expression associated with impaired beta cell function, including the induction of glucose-6-phosphatase and suppression of GLUT2, glucokinase, and glycerol-3-phosphate dehydrogenase. These changes result in blunting of the glucose-induced rise in cellular ATP levels and membrane electrical activity responsible for Ca(2+) influx and insulin exocytosis. These results strongly suggest that PGC-1alpha plays a key functional role in the beta cell and is involved in the pathogenesis of the diabetic phenotype.


Obesity | 2010

Respiration in adipocytes is inhibited by reactive oxygen species.

Tong Wang; Yaguang Si; Orian S. Shirihai; Huiqing Si; Vera Schultz; Richard F. Corkey; Liping Hu; Jude T. Deeney; Wen Guo; Barbara E. Corkey

It is a desirable goal to stimulate fuel oxidation in adipocytes and shift the balance toward less fuel storage and more burning. To understand this regulatory process, respiration was measured in primary rat adipocytes, mitochondria, and fat‐fed mice. Maximum O2 consumption, in vitro, was determined with a chemical uncoupler of oxidative phosphorylation (carbonylcyanide p‐trifluoromethoxyphenylhydrazone (FCCP)). The adenosine triphosphate/adenosine diphosphate (ATP/ADP) ratio was measured by luminescence. Mitochondria were localized by confocal microscopy with MitoTracker Green and their membrane potential (ΔψM) measured using tetramethylrhodamine ethyl ester perchlorate (TMRE). The effect of N‐acetylcysteine (NAC) on respiration and body composition in vivo was assessed in mice. Addition of FCCP collapsed ΔψM and decreased the ATP/ADP ratio. However, we demonstrated the same rate of adipocyte O2 consumption in the absence or presence of fuels and FCCP. Respiration was only stimulated when reactive oxygen species (ROS) were scavenged by pyruvate or NAC: other fuels or fuel combinations had little effect. Importantly, the ROS scavenging role of pyruvate was not affected by rotenone, an inhibitor of mitochondrial complex I. In addition, mice that consumed NAC exhibited increased O2 consumption and decreased body fat in vivo. These studies suggest for the first time that adipocyte O2 consumption may be inhibited by ROS, because pyruvate and NAC stimulated respiration. ROS inhibition of O2 consumption may explain the difficulty to identify effective strategies to increase fat burning in adipocytes. Stimulating fuel oxidation in adipocytes by decreasing ROS may provide a novel means to shift the balance from fuel storage to fuel burning.


Obesity | 2009

The CB1 Antagonist Rimonabant Decreases Insulin Hypersecretion in Rat Pancreatic Islets

Lisa Getty-Kaushik; Ann-Marie T. Richard; Jude T. Deeney; Sarah A. Krawczyk; Orian S. Shirihai; Barbara E. Corkey

Type 2 diabetes and obesity are characterized by elevated nocturnal circulating free fatty acids, elevated basal insulin secretion, and blunted glucose‐stimulated insulin secretion (GSIS). The CB1 receptor antagonist, Rimonabant, has been shown to improve glucose tolerance and insulin sensitivity in vivo but its direct effect on islets has been unclear. Islets from lean littermates and obese Zucker (ZF) and Zucker Diabetic Fatty (ZDF) rats were incubated for 24 h in vitro and exposed to 11 mmol/l glucose and 0.3 mmol/l palmitate (GL) with or without Rimonabant. Insulin secretion was determined at basal (3 mmol/l) or stimulatory (15 mmol/l) glucose concentrations. As expected, basal secretion was significantly elevated in islets from obese or GL‐treated lean rats whereas the fold increase in GSIS was diminished. Rimonabant decreased basal hypersecretion in islets from obese rats and GL‐treated lean rats without decreasing the fold increase in GSIS. However, it decreased GSIS in islets from lean rats without affecting basal secretion. These findings indicate that Rimonabant has direct effects on islets to reduce insulin secretion when secretion is elevated above normal levels by diet or in obesity. In contrast, it appears to decrease stimulated secretion in islets from lean animals but not in obese or GL‐exposed islets.


Biochemical Journal | 2007

Ca2+, NAD(P)H and membrane potential changes in pancreatic β-cells by methyl succinate: comparison with glucose

Emma Heart; Gordon C. Yaney; Richard F. Corkey; Vera Schultz; Esthere Luc; Lihan Liu; Jude T. Deeney; Orian S. Shirihai; Keith Tornheim; Peter J. Smith; Barbara E. Corkey

The present study was undertaken to determine the main metabolic secretory signals generated by the mitochondrial substrate MeS (methyl succinate) compared with glucose in mouse and rat islets and to understand the differences. Glycolysis and mitochondrial metabolism both have key roles in the stimulation of insulin secretion by glucose. Both fuels elicited comparable oscillatory patterns of Ca2+ and changes in plasma and mitochondrial membrane potential in rat islet cells and clonal pancreatic beta-cells (INS-1). Saturation of the Ca2+ signal occurred between 5 and 6 mM MeS, while secretion reached its maximum at 15 mM, suggesting operation of a K(ATP)-channel-independent pathway. Additional responses to MeS and glucose included elevated NAD(P)H autofluorescence in INS-1 cells and islets and increases in assayed NADH and NADPH and the ATP/ADP ratio. Increased NADPH and ATP/ADP ratios occurred more rapidly with MeS, although similar levels were reached after 5 min of exposure to each fuel, whereas NADH increased more with MeS than with glucose. Reversal of MeS-induced cell depolarization by Methylene Blue completely inhibited MeS-stimulated secretion, whereas basal secretion and KCl-induced changes in these parameters were not affected. MeS had no effect on secretion or signals in the mouse islets, in contrast with glucose, possibly due to a lack of malic enzyme. The data are consistent with the common intermediates being pyruvate, cytosolic NADPH or both, and suggest that cytosolic NADPH production could account for the more rapid onset of MeS-induced secretion compared with glucose stimulation.


PLOS ONE | 2012

Reactive Oxygen Species Stimulate Insulin Secretion in Rat Pancreatic Islets: Studies Using Mono-Oleoyl-Glycerol

Marylana Saadeh; Thomas C. Ferrante; Ada Kane; Orian S. Shirihai; Barbara E. Corkey; Jude T. Deeney

Chronic exposure (24–72 hrs) of pancreatic islets to elevated glucose and fatty acid leads to glucolipoxicity characterized by basal insulin hypersecretion and impaired glucose-stimulated insulin secretion (GSIS). Our aim was to determine the mechanism for basal hypersecretion of insulin. We used mono-oleoyl-glycerol (MOG) as a tool to rapidly increase lipids in isolated rat pancreatic ß-cells and in the clonal pancreatic ß-cell line INS-1 832/13. MOG (25–400 µM) stimulated basal insulin secretion from ß-cells in a concentration dependent manner without increasing intracellular Ca2+ or O2 consumption. Like GSIS, MOG increased NAD(P)H and reactive oxygen species (ROS). The mitochondrial reductant ß-hydroxybutyrate (ß-OHB) also increased the redox state and ROS production, while ROS scavengers abrogated secretion. Diazoxide (0.4 mM) did not prevent the stimulatory effect of MOG, confirming that the effect was independent of the KATP-dependent pathway of secretion. MOG was metabolized to glycerol and long-chain acyl-CoA (LC-CoA), whereas, acute oleate did not similarly increase LC-CoA. Inhibition of diacylglycerol kinase (DGK) did not mimic the effect of MOG on insulin secretion, indicating that MOG did not act primarily by inhibiting DGK. Inhibition of acyl-CoA synthetase (ACS) reduced the stimulatory effect of MOG on basal insulin secretion by 30% indicating a role for LC-CoA. These data suggest that basal insulin secretion is stimulated by increased ROS production, due to an increase in the mitochondrial redox state independent of the established components of GSIS.


Journal of Clinical Investigation | 1991

Ca2+ responses to interleukin 1 and tumor necrosis factor in cultured human skin fibroblasts. Possible implications for Reye syndrome.

Barbara E. Corkey; Jean François Geschwind; Jude T. Deeney; Daniel E. Hale; Steven D. Douglas; Laurie E. Kilpatrick

Elevated concentrations of cytokines were found in the plasma of patients acutely ill with Reye syndrome (RS) but not in control subjects or recovered RS patients. To determine whether this disorder involves a genetically determined abnormal response to cytokines, the effects of tumor necrosis factor (TNF) and IL-1 on intracellular free Ca2+ were compared in cultured skin fibroblasts from control subjects and patients with RS. IL-1 and TNF caused rapid, transient, and concentration-dependent increases in cytosolic free Ca2+. The peak cytosolic free Ca2+ was greater and occurred at higher concentrations of IL-1 and TNF in patient cells than in cells from age-matched controls. In control cells, the Ca2+ transient diminished sharply with increasing amounts of IL-1 or TNF above the maximum stimulatory concentration. In contrast, in patient fibroblast this bell-shaped curve of concentration dependency was much less apparent. Bradykinin-stimulated Ca2+ transients were similar in the two groups and did not exhibit the bell-shaped concentration dependency. Thus, plasma cytokine levels are elevated in RS patients and the Ca2+ response to cytokines is increased in cells derived from these patients. We propose that the increased response reflects a genetic defect in cytokine receptor-modulated signal transduction.

Collaboration


Dive into the Jude T. Deeney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon C. Yaney

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Prentki

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge