Barbara Garavaglia
Carlo Besta Neurological Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Garavaglia.
American Journal of Human Genetics | 2012
Tobias B. Haack; Penelope Hogarth; Michael C. Kruer; Allison Gregory; Thomas Wieland; Thomas Schwarzmayr; Elisabeth Graf; Lynn Sanford; Esther Meyer; Eleanna Kara; Stephan M. Cuno; Sami I. Harik; Vasuki H. Dandu; Nardo Nardocci; Giovanna Zorzi; Todd Dunaway; Mark A. Tarnopolsky; Steven Skinner; Steven J. Frucht; Era Hanspal; Connie Schrander-Stumpel; Delphine Héron; Cyril Mignot; Barbara Garavaglia; Kailash P. Bhatia; John Hardy; Tim M. Strom; Nathalie Boddaert; Henry Houlden; Manju A. Kurian
Neurodegeneration with brain iron accumulation (NBIA) is a group of genetic disorders characterized by abnormal iron deposition in the basal ganglia. We report that de novo mutations in WDR45, a gene located at Xp11.23 and encoding a beta-propeller scaffold protein with a putative role in autophagy, cause a distinctive NBIA phenotype. The clinical features include early-onset global developmental delay and further neurological deterioration (parkinsonism, dystonia, and dementia developing by early adulthood). Brain MRI revealed evidence of iron deposition in the substantia nigra and globus pallidus. Males and females are phenotypically similar, an observation that might be explained by somatic mosaicism in surviving males and germline or somatic mutations in females, as well as skewing of X chromosome inactivation. This clinically recognizable disorder is among the more common forms of NBIA, and we suggest that it be named accordingly as beta-propeller protein-associated neurodegeneration.
Radiology | 2009
Domenico Aquino; Alberto Bizzi; Marina Grisoli; Barbara Garavaglia; Maria Grazia Bruzzone; Nardo Nardocci; Mario Savoiardo; Luisa Chiapparini
PURPOSE To determine the values of iron accumulation in the basal ganglia of healthy volunteers of different ages with R2* and raw signal intensity measurements from T1-weighted magnetic resonance (MR) images, supported by voxel-based relaxometry (VBR), and to compare them with previously reported iron concentrations found in autopsy material. MATERIALS AND METHODS The ethics committee approved the study, and the participants or their parents gave written informed consent. Eighty subjects (41 female and 39 male subjects; age range, 1-80 years) were examined at 1.5 T. For each subject, R2* values were calculated. Curves for R2* versus age were obtained for globus pallidus (GP), putamen, caudate nucleus, substantia nigra (SN), and frontal white matter (FWM). To highlight possible differences in iron concentration among the age decades, VBR was applied. Signal intensity values were estimated on T1-weighted fast low-angle shot images, and regions of interest were drawn in each nucleus. R2* values were also compared with iron concentrations reported in a postmortem study. Statistical analysis was performed (t test), and a difference with P < .05 (FDR corrected) was significant. RESULTS The curves for R2* versus age showed an exponential increase with increasing age in all the basal ganglia. VBR demonstrated significant differences (P < .05, corrected) in the comparison between the 2nd and the following decades for lenticular nuclei. Good correlation coefficients were found for GP (R(2) = 0.64), putamen (R(2) = 0.51), and SN (R(2) = 0.53) when compared with findings in the postmortem study. Signal intensity curves were similar to the R2* curves. CONCLUSION R2* measurements can be used to quantify brain iron accumulation and thus may allow better evaluation of neurodegenerative diseases associated with iron deposition.
European Journal of Human Genetics | 2005
Daniele Ghezzi; Cecilia Marelli; Alessandro Achilli; Stefano Goldwurm; Gianni Pezzoli; Paolo Barone; Maria Teresa Pellecchia; Paolo Stanzione; Livia Brusa; Anna Rita Bentivoglio; Ubaldo Bonuccelli; Lucia Petrozzi; Giovanni Abbruzzese; Roberta Marchese; Pietro Cortelli; Daniela Grimaldi; Paolo Martinelli; Carlo Ferrarese; Barbara Garavaglia; Simonetta Sangiorgi; Valerio Carelli; Antonio Torroni; Alberto Albanese; Massimo Zeviani
It has been proposed that European mitochondrial DNA (mtDNA) haplogroups J and K, and their shared 10398G single-nucleotide polymorphism (SNP) in the ND3 gene, are protective from Parkinsons disease (PD). We evaluated the distribution of the different mtDNA haplogroups in a large cohort of 620 Italian patients with adult-onset (>50, <65 years of age) idiopathic PD vs two groups of ethnic-matched controls. Neither the frequencies of haplogroup J nor that of 10398G were significantly different. However, the frequency of haplogroup K was significantly lower in PD. Stratification by sex and age indicated that the difference in the distribution of haplogroup K was more prominent in >50year old males. In spite of the common 10398G SNP, haplogroups J and K belong to widely diverging mitochondrial clades, a consideration that may explain the different results obtained for the two haplogroups in our cohorts. Our study suggests that haplogroup K might confer a lower risk for PD in Italians, corroborating the idea that the mitochondrial oxidative phosphorylation pathway is involved in the susceptibility to idiopathic PD.
Annals of Neurology | 2006
Monika Hartig; Konstanze Hörtnagel; Barbara Garavaglia; Giovanna Zorzi; Tomasz Kmiec; Thomas Klopstock; Kevin Rostasy; Marina Svetel; Vladimir Kostic; Markus Schuelke; Evelyn Botz; Adolf Weindl; Ivana Novakovic; Nardo Nardocci; Holger Prokisch; Thomas Meitinger
Neurodegeneration with brain iron accumulation (NBIA) is a group of disorders characterized by magnetic resonance imaging (MRI) changes in basal ganglia. Both missense and nonsense mutations have been found in such patients in a gene encoding the mitochondrial pantothenate kinase (PANK2).
American Journal of Human Genetics | 2014
Sabrina Dusi; Lorella Valletta; Tobias B. Haack; Yugo Tsuchiya; Paola Venco; Marco Tigano; Nikita Demchenko; Thomas Wieland; Thomas Schwarzmayr; Tim M. Strom; Federica Invernizzi; Barbara Garavaglia; Allison Gregory; Lynn Sanford; Jeffrey Hamada; Conceição Bettencourt; Henry Houlden; Luisa Chiapparini; Giovanna Zorzi; Manju A. Kurian; Nardo Nardocci; Holger Prokisch; Susan J. Hayflick; Ivan Gout; Valeria Tiranti
Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA.
Movement Disorders | 2011
Giovanna Zorzi; Federica Zibordi; Luisa Chiapparini; Enrico Bertini; Lidia Russo; Antonio Piga; Filomena Longo; Barbara Garavaglia; Domenico Aquino; Mario Savoiardo; Alessandra Solari; Nardo Nardocci
The safety and efficacy of the oral iron‐chelating agent deferiprone on magnetic resonance pallida iron concentration and on clinical status were investigated in 10 patients affected by pantothenate kinase–associated neurodegeneration.
Neurology | 1994
Carlo Antozzi; Barbara Garavaglia; Marina Mora; M. Rimoldi; L. Morandi; E. Ursino; Stefano DiDonato
We studied the effect of riboflavin treatment on the clinical status and on the activities of β-oxidation and respiratory chain enzymes in a 69-year-old patient with late-onset myopathy. Before treatment, she was very weak and wasted in the limbs and trunk muscles; also, she could not walk or attend to daily activities. Marked lipid storage was present in the muscle biopsy. The activities of short-chain acyl coenzyme A (acyl-CoA) dehydrogenase (SCAD), medium-chain acyl-CoA dehydrogenase (MCAD), and long-chain acyl-CoA dehydrogenase (LCAD) in isolated muscle mitochondria were reduced to less than 10% of control values. This defect in fatty acid oxidation was associated with a marked deficiency of two flavin-dependent respiratory chain complexes: complex I activity was 20% and complex II activity was 25% of control values. By contrast, the activities of the nonflavin-dependent complex III and complex IV were normal. Western blot analysis of the patients muscle mitochondrial extracts with antibodies raised against purified SCAD, MCAD, and the α-and β-subunits of the electron transfer flavoprotein (ETF) showed absence of SCAD cross-reacting material (CRM), markedly decreased MCAD-CRM, and normal amounts of both α- and β-ETF-CRM. After riboflavin treatment, the patients clinical status dramatically improved and morphologic changes in muscle disappeared. SCAD activity increased to 55% of control values, whereas MCAD, LCAD, and complex I and complex II activities normalized. SCAD and MCAD immunoreactivity was restored to normal. On the basis of our experience and the data in the literature, we concluded that some lipid storage myopathies can show dramatic response to riboflavin.
Clinica Chimica Acta | 1984
S. Di Donato; M. Rimoldi; Barbara Garavaglia; Graziella Uziel
Two patients with propionic acidemia (PA) and two patients with methylmalonic aciduria (MMA) had low plasma free carnitine and increased short-chain acylcarnitines. Urinary excretion of free carnitine was decreased, while the excretion of short-chain acylcarnitines, mostly propionylcarnitine , was increased. Carnitine supplementation markedly increased the short-chain acylcarnitine fractions of both plasma and urine. Total carnitine content was decreased in skeletal muscle biopsies obtained from two of the patients. It is suggested that in these organic acidurias mitochondrial propionylcarnitine , formed from free carnitine and excess propionylCoA exchanges with free cytosolic carnitine: propionylcarnitine is then lost in the urine, causing secondary carnitine deficiency in the tissues.
Molecular Genetics and Metabolism | 2012
Valerio Leoni; Laura Strittmatter; Giovanna Zorzi; Federica Zibordi; Sabrina Dusi; Barbara Garavaglia; Paola Venco; Claudio Caccia; Amanda Souza; Amy Deik; Clary B. Clish; M. Rimoldi; Emilio Ciusani; Enrico Bertini; Nardo Nardocci; Vamsi K. Mootha; Valeria Tiranti
Pantothenate kinase-associated neurodegeneration (PKAN) is a rare, inborn error of metabolism characterized by iron accumulation in the basal ganglia and by the presence of dystonia, dysarthria, and retinal degeneration. Mutations in pantothenate kinase 2 (PANK2), the rate-limiting enzyme in mitochondrial coenzyme A biosynthesis, represent the most common genetic cause of this disorder. How mutations in this core metabolic enzyme give rise to such a broad clinical spectrum of pathology remains a mystery. To systematically explore its pathogenesis, we performed global metabolic profiling on plasma from a cohort of 14 genetically defined patients and 18 controls. Notably, lactate is elevated in PKAN patients, suggesting dysfunctional mitochondrial metabolism. As predicted, but never previously reported, pantothenate levels are higher in patients with premature stop mutations in PANK2. Global metabolic profiling and follow-up studies in patient-derived fibroblasts also reveal defects in bile acid conjugation and lipid metabolism, pathways that require coenzyme A. These findings raise a novel therapeutic hypothesis, namely, that dietary fats and bile acid supplements may hold potential as disease-modifying interventions. Our study illustrates the value of metabolic profiling as a tool for systematically exploring the biochemical basis of inherited metabolic diseases.
Genetics in Medicine | 2001
Yuhuan Wang; Stanley H. Korman; Jing Ye; J. Jay Gargus; Alisa Gutman; Franco Taroni; Barbara Garavaglia; Nicola Longo
Purpose: Primary carnitine deficiency is an autosomal recessive disorder of fatty acid oxidation resulting from defective carnitine transport. This disease is caused by mutations in the carnitine transporter gene SLC22A5. The objective of this study was to extend mutational analysis to four additional families with this disorder and determine whether recurrent mutations could be found.Methods: The SLC22A5 gene encoding the OCTN2 carnitine transporter was sequenced, and the missense mutations identified were expressed in Chinese hamster ovary (CHO) cells.Results: DNA sequencing revealed four novel mutations (Y4X; dup 254–264, 133X; R19P; R399Q). Alleles introducing premature STOP codons reduced the levels of OCTN2 mRNA. Carnitine transport in CHO cells expressing the R19P and R399Q mutations was reduced to < 5% of normal. The 133X mutation was found in two unrelated European families. Two patients within the same family, both homozygous for the same mutation (R399Q) had completely different clinical presentation.Conclusions: Heterogeneous mutations in the SLC22A5 gene cause primary carnitine deficiency. Different presentations are observed even in children with identical mutations.
Collaboration
Dive into the Barbara Garavaglia's collaboration.
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputs