Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Geering is active.

Publication


Featured researches published by Barbara Geering.


Trends in Biochemical Sciences | 2009

Regulation of phosphoinositide 3-kinase expression in health and disease.

Klaartje Kok; Barbara Geering; Bart Vanhaesebroeck

Both the biology and the therapeutic potential of the phosphoinositide 3-kinase (PI3K) signalling axis have been the subject of intense investigation; however, little is known about the regulation of PI3K expression. Emerging evidence indicates that PI3K levels change in response to cellular stimulation with insulin and nuclear receptor ligands, and during various physiological and pathological processes including differentiation, regeneration, hypertension and cancer. Recently identified mechanisms that control PI3K production include increased gene copy number in cancer, and transcriptional regulation of the p110alpha PI3K gene by FOXO3a, NF-kappaB and p53, and of the PI3K regulatory subunits by STAT3, EBNA-2 and SREBP. In most instances, however, the impact of alterations in PI3K expression on PI3K signalling and disease remains to be established.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers

Barbara Geering; Pedro R. Cutillas; Gemma Nock; S Gharbi; Bart Vanhaesebroeck

Class IA phosphoinositide 3-kinases (PI3Ks) signal downstream of tyrosine kinases and Ras and control a wide variety of biological responses. In mammals, these heterodimeric PI3Ks consist of a p110 catalytic subunit (p110α, p110β, or p110δ) bound to any of five distinct regulatory subunits (p85α, p85β, p55γ, p55α, and p50α, collectively referred to as “p85s”). The relative expression levels of p85 and p110 have been invoked to explain key features of PI3K signaling. For example, free (i.e., non-p110-bound) p85α has been proposed to negatively regulate PI3K signaling by competition with p85/p110 for recruitment to phosphotyrosine docking sites. Using affinity and ion exchange chromatography and quantitative mass spectrometry, we demonstrate that the p85 and p110 subunits are present in equimolar amounts in mammalian cell lines and tissues. No evidence for free p85 or p110 subunits could be obtained. Cell lines contain 10,000–15,000 p85/p110 complexes per cell, with p110β and p110δ being the most prevalent catalytic subunits in nonleukocytes and leukocytes, respectively. These results argue against a role of free p85 in PI3K signaling and provide insights into the nonredundant functions of the different class IA PI3K isoforms.


Cell Death & Differentiation | 2011

Peculiarities of cell death mechanisms in neutrophils.

Barbara Geering; Hans-Uwe Simon

Analyses of neutrophil death mechanisms have revealed many similarities with other cell types; however, a few important molecular features make these cells unique executors of cell death mechanisms. For instance, in order to fight invading pathogens, neutrophils possess a potent machinery to produce reactive oxygen species (ROS), the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Evidence is emerging that these ROS are crucial in the execution of most neutrophil cell death mechanisms. Likewise, neutrophils exhibit many diverse granules that are packed with cytotoxic mediators. Of those, cathepsins were recently shown to activate pro-apoptotic B-cell lymphoma-2 (Bcl-2) family members and caspases, thus acting on apoptosis regulators. Moreover, neutrophils have few mitochondria, which hardly participate in ATP synthesis, as neutrophils gain energy from glycolysis. In spite of relatively low levels of cytochrome c in these cells, the mitochondrial death pathway is functional. In addition to these pecularities defining neutrophil death pathways, neutrophils are terminally differentiated cells, hence they do not divide but undergo apoptosis shortly after maturation. The initial trigger of this spontaneous apoptosis remains to be determined, but may result from low transcription and translation activities in mature neutrophils. Due to the unique biological characteristics of neutrophils, pharmacological intervention of inflammation has revealed unexpected and sometimes disappointing results when neutrophils were among the prime target cells during therapy. In this study, we review the current and emerging models of neutrophil cell death mechanisms with a focus on neutrophil peculiarities.


Trends in Immunology | 2013

Living and dying for inflammation: neutrophils, eosinophils, basophils

Barbara Geering; Christina Stoeckle; Sébastien Conus; Hans-Uwe Simon

Neutrophils, eosinophils, and basophils play essential roles during microbe-induced and sterile inflammation. The severity of such inflammatory processes is controlled, at least in part, by factors that regulate cell death and survival of granulocytes. In recent years, major progress has been made in understanding the molecular mechanisms of granulocyte cell death and in identifying novel damage- and pathogen-associated molecular patterns as well as regulatory cytokines impacting granulocyte viability. Furthermore, an increased interest in innate immunity has boosted our overall understanding of granulocyte biology. In this review, we describe and compare factors and mechanisms regulating neutrophil, eosinophil, and basophil lifespan. Because dysregulation of death pathways in granulocytes can contribute to inflammation-associated immunopathology, targeting granulocyte lifespan could be therapeutically promising.


Molecular & Cellular Proteomics | 2005

Quantification of Gel-separated Proteins and Their Phosphorylation Sites by LC-MS Using Unlabeled Internal Standards Analysis of Phosphoprotein Dynamics in a B Cell Lymphoma Cell Line

Pedro R. Cutillas; Barbara Geering; M D Waterfield; Bart Vanhaesebroeck

Protein phosphorylation plays a critical role in normal cellular function and is often subverted in disease. Although major advances have recently been made in identification and quantitation of protein phosphorylation sites by MS, current methodological limitations still preclude routine, easily usable, and comprehensive quantitative analysis of protein phosphorylation. Here we report a simple LC-MS method to quantify gel-separated proteins and their sites of phosphorylation; in this approach, integrated chromatographic peak areas of peptide analytes from proteins under study are normalized to those of a non-isotopically labeled internal standard protein spiked into the excised gel samples just prior to in-gel digestion. The internal standard intensities correct for differences in enzymatic activities and sample losses that may occur during the processes of in-gel digestion and peptide extraction from the gel pieces. We used this method of peak area measurement with an internal standard to investigate the effects of pervanadate on protein phosphorylation in the WEHI-231 B cell lymphoma cell line and to assess the role of phosphoinositide 3-kinase (PI3K) in these phosphorylation events. Phosphoproteins, isolated from total cell lysates using IMAC or by immunoprecipitation using Tyr(P) antibodies, were analyzed using this method, leading to identification of >400 proteins, several of which were found at higher levels in phosphoprotein fractions after pervanadate treatment. Pretreatment of cells with the PI3K inhibitor wortmannin reduced the phosphorylation level of certain proteins (e.g. STAT1 and phospholipase Cγ2) while increasing the phosphorylation of several others. Peak area measurement with an internal standard was also used to follow the dynamics of PI3K-dependent and -independent changes in the post-translational modification of both known and novel phospholipase Cγ2 phosphorylation sites. Our results illustrate the capacity of this conceptually simple LC-MS method for quantification of gel-separated proteins and their phosphorylation sites and for quantitative profiling of biological systems.


Blood | 2011

A novel TNFR1-triggered apoptosis pathway mediated by class IA PI3Ks in neutrophils

Barbara Geering; Ursina Gurzeler; Elena A. Federzoni; Thomas Kaufmann; Hans-Uwe Simon

The most common form of neutrophil death is apoptosis. In the present study, we report surprising differences in the molecular mechanisms used for caspase activation between FAS/CD95-stimulated and TNF receptor 1 (TNFR1)-stimulated neutrophils. Whereas FAS-induced apoptosis was followed by caspase-8 activation and required Bid to initiate the mitochondrial amplification loop, TNF-α-induced apoptosis involved class IA PI3Ks, which were activated by MAPK p38. TNF-α-induced PI3K activation resulted in the generation of reactive oxygen species, which activated caspase-3, a mechanism that did not operate in neutrophils without active NADPH oxidase. We conclude that in neutrophils, proapoptotic pathways after TNFR1 stimulation are initiated by p38 and PI3K, but not by caspase-8, a finding that should be considered in anti-inflammatory drug-development strategies.


Biochemical Society Transactions | 2007

Regulation of class IA PI3Ks: is there a role for monomeric PI3K subunits?

Barbara Geering; Pedro R. Cutillas; Bart Vanhaesebroeck

Class IA PI3Ks (phosphoinositide 3-kinases) consist of a p110 catalytic subunit bound to one of five regulatory subunits, known as p85s. Under unstimulated conditions, p85 stabilizes the labile p110 protein, while inhibiting its catalytic activity. Recruitment of the p85-p110 complex to receptors and adaptor proteins via the p85 SH2 (Src homology 2) domains alleviates this inhibition, leading to PI3K activation and production of PIP(3) (phosphatidylinositol 3,4,5-trisphosphate). Four independent p85 KO (knockout) mouse lines have been generated. Remarkably, PI3K signalling in insulin-sensitive tissues of these mice is increased. The existence of p110-free p85 in insulin-responsive cells has been invoked to explain this observation. Such a monomeric p85 would compete with heterodimeric p85-p110 for pTyr (phosphotyrosine) recruitment, and thus repress PI3K activity. Reduction in the pool of p110-free p85 in p85 KO mice was thought to allow recruitment of functional heterodimeric p85-p110, leading to increased PI3K activity. However, recent results indicate that monomeric p85, like p110, is unstable in cells. Moreover, overexpressed free p85 does not necessarily compete with heterodimeric p85-p110 for receptor binding. Using a variety of approaches, we have observed a 1:1 ratio between the p85 and p110 subunits in murine cell lines and primary tissues. Alternative models to explain the increase in PI3K signalling in insulin-responsive cells of p85 KO mice, based on possible effects of p85 deletion on phosphatases acting on PIP(3), are discussed.


Nature Communications | 2014

A designer cell-based histamine-specific human allergy profiler

David Ausländer; Benjamin Eggerschwiler; Christian Kemmer; Barbara Geering; Simon Ausländer; Martin Fussenegger

Allergic disorders are markedly increasing in industrialized countries. The identification of compounds that trigger the immunoglobulin E-dependent allergic reaction remains the key to limit patients’ exposure to critical allergens and improve their quality of life. Here we use synthetic biology principles to design a mammalian cell-based allergy profiler that scores the allergen-triggered release of histamine from whole-blood-derived human basophils. A synthetic signalling cascade engineered within the allergy profiler rewires histamine input to the production of reporter protein, thereby integrating histamine levels in whole-blood samples with remarkable sensitivity and a wide dynamic range, allowing for rapid results or long-term storage of output, respectively. This approach provides non-intrusive allergy profiles for the personalized medicine era.


Trends in Biotechnology | 2015

Synthetic immunology: modulating the human immune system

Barbara Geering; Martin Fussenegger

Humans have manipulated the immune system to dampen or boost the immune response for thousands of years. As our understanding of fundamental immunology and biotechnological methodology accumulates, we can capitalize on this combined knowledge to engineer biological devices with the aim of rationally manipulating the immune response. We address therapeutic approaches based on the principles of synthetic immunology that either ameliorate disorders of the immune system by interfering with the immune response, or improve diverse pathogenic conditions by exploiting immune cell effector functions. We specifically highlight synthetic proteins investigated in preclinical and clinical trials, summarize studies that have used engineered immune cells, and finish with a discussion of possible future therapeutic concepts.


Shock | 2009

Different patterns of Siglec-9-mediated neutrophil death responses in septic shock.

Stephan von Gunten; Stephan M. Jakob; Barbara Geering; Jukka Takala; Hans-Uwe Simon

Sialic-acid-binding immunoglobulin-like lectin (Siglec) 9 mediates death signals in neutrophils. The objective of this study was to determine the heterogeneity of neutrophil death responses in septic shock patients and to analyze whether these ex vivo data are related to the severity and outcome of septic shock. In this prospective cohort study, blood samples of patients with septic shock (n = 26) in a medical-surgical intensive care unit (ICU) were taken within 24 h of starting the treatment of septic shock (phase A), after circulatory stabilization (phase B), and 10 days after admission or at ICU discharge if earlier (phase C). Neutrophil death was quantified in the presence and absence of an agonistic anti-Siglec-9 antibody after 24 h ex vivo. In phase A, two distinct patterns of Siglec-9-mediated neutrophil death were observed: resistance to neutrophil death (n = 14; Siglec-9 nonresponders) and increased neutrophil death (n = 12; Siglec-9 responders) after Siglec-9 ligation compared with neutrophils from normal donors. Experiments using a pharmacological pan-caspase-inhibitor provided evidence for caspase-independent neutrophil death in Siglec-9 responders upon Siglec-9 ligation. There were no differences between Siglec-9 responders and nonresponders in length of ICU or hospital stay of survivors or severity of organ dysfunction. Taken together, septic shock patients exhibit different ex vivo death responses of blood neutrophils after Siglec-9 ligation early in shock. Both the resistance and the increased susceptibility to Siglec-9-mediated neutrophil death tend to normalize within 72 h after shock. Further studies are required to understand the role of Siglec-9-mediated neutrophil death in septic shock.

Collaboration


Dive into the Barbara Geering's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pedro R. Cutillas

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge