Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans-Uwe Simon is active.

Publication


Featured researches published by Hans-Uwe Simon.


Apoptosis | 2000

Role of reactive oxygen species (ROS) in apoptosis induction

Hans-Uwe Simon; A. Haj-Yehia; Francesca Levi-Schaffer

Reactive oxygen species (ROS) and mitochondria play an important role in apoptosis induction under both physiologic and pathologic conditions. Interestingly, mitochondria are both source and target of ROS. Cytochrome c release from mitochondria, that triggers caspase activation, appears to be largely mediated by direct or indirect ROS action. On the other hand, ROS have also anti-apoptotic effects. This review focuses on the role of ROS in the regulation of apoptosis, especially in inflammatory cells.


Cell Death & Differentiation | 2012

Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012

Lorenzo Galluzzi; Ilio Vitale; John M. Abrams; Emad S. Alnemri; Eric H. Baehrecke; Mikhail V. Blagosklonny; Ted M. Dawson; Valina L. Dawson; Wafik S. El-Deiry; Simone Fulda; Eyal Gottlieb; Douglas R. Green; Michael O. Hengartner; Oliver Kepp; Richard A. Knight; Sharad Kumar; Stuart A. Lipton; Xin Lu; Frank Madeo; Walter Malorni; Patrick Mehlen; Gabriel Núñez; Marcus E. Peter; Mauro Piacentini; David C. Rubinsztein; Yufang Shi; Hans-Uwe Simon; Peter Vandenabeele; Eileen White; Junying Yuan

In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including ‘apoptosis’, ‘necrosis’ and ‘mitotic catastrophe’. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.


Nature Cell Biology | 2006

Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis.

Shida Yousefi; Remo Perozzo; Inès Schmid; Andrew Ziemiecki; Thomas Schaffner; Leonardo Scapozza; Thomas Brunner; Hans-Uwe Simon

Autophagy-related gene (Atg) 5 is a gene product required for the formation of autophagosomes. Here, we report that Atg5, in addition to the promotion of autophagy, enhances susceptibility towards apoptotic stimuli. Enforced expression of Atg5-sensitized tumour cells to anticancer drug treatment both in vitro and in vivo. In contrast, silencing the Atg5 gene with short interfering RNA (siRNA) resulted in partial resistance to chemotherapy. Apoptosis was associated with calpain-mediated Atg5 cleavage, resulting in an amino-terminal cleavage product with a relative molecular mass of 24,000 (Mr 24K). Atg5 cleavage was observed independent of the cell type and the apoptotic stimulus, suggesting that calpain activation and Atg5 cleavage are general phenomena in apoptotic cells. Truncated Atg5 translocated from the cytosol to mitochondria, associated with the anti-apoptotic molecule Bcl-xL and triggered cytochrome c release and caspase activation. Taken together, calpain-mediated Atg5 cleavage provokes apoptotic cell death, therefore, represents a molecular link between autophagy and apoptosis — a finding with potential importance for clinical anticancer therapies.


Cell Death & Differentiation | 2009

Life and death partners: apoptosis, autophagy and the cross-talk between them

Avital Eisenberg-Lerner; Shani Bialik; Hans-Uwe Simon; Adi Kimchi

It is not surprising that the demise of a cell is a complex well-controlled process. Apoptosis, the first genetically programmed death process identified, has been extensively studied and its contribution to the pathogenesis of disease well documented. Yet, apoptosis does not function alone to determine a cells fate. More recently, autophagy, a process in which de novo-formed membrane-enclosed vesicles engulf and consume cellular components, has been shown to engage in a complex interplay with apoptosis. In some cellular settings, it can serve as a cell survival pathway, suppressing apoptosis, and in others, it can lead to death itself, either in collaboration with apoptosis or as a back-up mechanism when the former is defective. The molecular regulators of both pathways are inter-connected; numerous death stimuli are capable of activating either pathway, and both pathways share several genes that are critical for their respective execution. The cross-talk between apoptosis and autophagy is therefore quite complex, and sometimes contradictory, but surely critical to the overall fate of the cell. Furthermore, the cross-talk is a key factor in the outcome of death-related pathologies such as cancer, its development and treatment.


Cell Death & Differentiation | 2009

Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes

Lorenzo Galluzzi; Stuart A. Aaronson; John M. Abrams; Emad S. Alnemri; David W. Andrews; Eric H. Baehrecke; Nicolas G. Bazan; Mikhail V. Blagosklonny; Klas Blomgren; Christoph Borner; Dale E. Bredesen; Catherine Brenner; Maria Castedo; John A. Cidlowski; Aaron Ciechanover; Gerald M. Cohen; V De Laurenzi; R De Maria; Mohanish Deshmukh; Brian David Dynlacht; Wafik S. El-Deiry; Richard A. Flavell; Simone Fulda; Carmen Garrido; Pierre Golstein; Marie Lise Gougeon; Douglas R. Green; Hinrich Gronemeyer; György Hajnóczky; J. M. Hardwick

Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.


Nature Medicine | 2008

Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense

Shida Yousefi; Jeffrey A. Gold; Nicola Andina; James J. Lee; Ann M. Kelly; Evelyne Kozlowski; Inès Schmid; Alex Straumann; Janine Reichenbach; Gerald J. Gleich; Hans-Uwe Simon

Although eosinophils are considered useful in defense mechanisms against parasites, their exact function in innate immunity remains unclear. The aim of this study is to better understand the role of eosinophils within the gastrointestinal immune system. We show here that lipopolysaccharide from Gram-negative bacteria activates interleukin-5 (IL-5)- or interferon-γ–primed eosinophils to release mitochondrial DNA in a reactive oxygen species–dependent manner, but independent of eosinophil death. Notably, the process of DNA release occurs rapidly in a catapult-like manner—in less than one second. In the extracellular space, the mitochondrial DNA and the granule proteins form extracellular structures able to bind and kill bacteria both in vitro and under inflammatory conditions in vivo. Moreover, after cecal ligation and puncture, Il5-transgenic but not wild-type mice show intestinal eosinophil infiltration and extracellular DNA deposition in association with protection against microbial sepsis. These data suggest a previously undescribed mechanism of eosinophil-mediated innate immune responses that might be crucial for maintaining the intestinal barrier function after inflammation-associated epithelial cell damage, preventing the host from uncontrolled invasion of bacteria.


The New England Journal of Medicine | 2008

Treatment of Patients with the Hypereosinophilic Syndrome with Mepolizumab

Marc E. Rothenberg; Amy D. Klion; Florence Roufosse; Jean Emmanuel Kahn; Peter F. Weller; Hans-Uwe Simon; Lawrence B. Schwartz; Lanny J. Rosenwasser; Johannes Ring; Elaine F. Griffin; Ann E. Haig; Paul I.H. Frewer; Jacqueline M. Parkin; Gerald J. Gleich

BACKGROUND The hypereosinophilic syndrome is a group of diseases characterized by persistent blood eosinophilia, defined as more than 1500 cells per microliter with end-organ involvement and no recognized secondary cause. Although most patients have a response to corticosteroids, side effects are common and can lead to considerable morbidity. METHODS We conducted an international, randomized, double-blind, placebo-controlled trial evaluating the safety and efficacy of an anti-interleukin-5 monoclonal antibody, mepolizumab, in patients with the hypereosinophilic syndrome. Patients were negative for the FIP1L1-PDGFRA fusion gene and required prednisone monotherapy, 20 to 60 mg per day, to maintain a stable clinical status and a blood eosinophil count of less than 1000 per microliter. Patients received either intravenous mepolizumab or placebo while the prednisone dose was tapered. The primary end point was the reduction of the prednisone dose to 10 mg or less per day for 8 or more consecutive weeks. RESULTS The primary end point was reached in 84% of patients in the mepolizumab group, as compared with 43% of patients in the placebo group (hazard ratio, 2.90; 95% confidence interval [CI], 1.59 to 5.26; P<0.001) with no increase in clinical activity of the hypereosinophilic syndrome. A blood eosinophil count of less than 600 per microliter for 8 or more consecutive weeks was achieved in 95% of patients receiving mepolizumab, as compared with 45% of patients receiving placebo (hazard ratio, 3.53; 95% CI, 1.94 to 6.45; P<0.001). Serious adverse events occurred in seven patients receiving mepolizumab (14 events, including one death; mean [+/-SD] duration of exposure, 6.7+/-1.9 months) and in five patients receiving placebo (7 events; mean duration of exposure, 4.3+/-2.6 months). CONCLUSIONS Our study shows that treatment with mepolizumab, an agent designed to target eosinophils, can result in corticosteroid-sparing for patients negative for FIP1L1-PDGFRA who have the hypereosinophilic syndrome. (ClinicalTrials.gov number, NCT00086658 [ClinicalTrials.gov].).


The EMBO Journal | 2015

Autophagy in malignant transformation and cancer progression

Lorenzo Galluzzi; Federico Pietrocola; José Manuel Bravo-San Pedro; Ravi K. Amaravadi; Eric H. Baehrecke; Francesco Cecconi; Patrice Codogno; Jayanta Debnath; David A. Gewirtz; Vassiliki Karantza; Alec C. Kimmelman; Sharad Kumar; Beth Levine; Maria Chiara Maiuri; Seamus J. Martin; Josef M. Penninger; Mauro Piacentini; David C. Rubinsztein; Hans-Uwe Simon; Anne Simonsen; Andrew Thorburn; Guillermo Velasco; Kevin M. Ryan; Guido Kroemer

Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.


Journal of Clinical Investigation | 2000

T cell–mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis

Axel Trautmann; Mübeccel Akdis; Daniela Kleemann; Frank Altznauer; Hans-Uwe Simon; Thomas Graeve; Michaela Noll; Eva-B. Bröcker; Kurt Blaser; Cezmi A. Akdis

Clinical and histologic similarities between various eczematous disorders point to a common efferent pathway. We demonstrate here that activated T cells infiltrating the skin in atopic dermatitis (AD) and allergic contact dermatitis (ACD) induce keratinocyte (KC) apoptosis. KCs normally express low levels of Fas receptor (FasR) that can be substantially enhanced by the presence of IFN-gamma. KCs are rendered susceptible to apoptosis by IFN-gamma when FasR numbers reach a threshold of approximately 40,000 per KC. Subsequently, KCs undergo apoptosis induced by anti-FasR mAbs, soluble Fas ligand, supernatants from activated T cells, or direct contact between T cells and KCs. Apoptotic KCs show typical DNA fragmentation and membrane phosphatidylserine expression. KC apoptosis was demonstrated in situ in lesional skin affected by AD, ACD, and patch tests. Using numerous cytokines and anti-cytokine neutralizing mAbs, we found no evidence that cytokines other than IFN-gamma participate in this process. In addition, apoptosis-inducing pathways other than FasR triggering were ruled out by blocking T cell-induced KC apoptosis by caspase inhibitors and soluble Fas-Fc protein. Responses of normal human skin and cultured skin equivalents to activated T cells demonstrated that KC apoptosis caused by skin-infiltrating T cells is a key event in the pathogenesis of eczematous dermatitis.


Cell Death & Differentiation | 2009

Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps

Shida Yousefi; Cristina C. Mihalache; Evelyne Kozlowski; Inès Schmid; Hans-Uwe Simon

Neutrophil extracellular traps (NETs) represent extracellular structures able to bind and kill microorganisms. It is believed that they are generated by neutrophils undergoing cell death, allowing these dying or dead cells to kill microbes. We show that, following priming with granulocyte/macrophage colony-stimulating factor (GM-CSF) and subsequent short-term toll-like receptor 4 (TLR4) or complement factor 5a (C5a) receptor stimulation, viable neutrophils are able to generate NETs. Strikingly, NETs formed by living cells contain mitochondrial, but no nuclear, DNA. Pharmacological or genetic approaches to block reactive oxygen species (ROS) production suggested that NET formation is ROS dependent. Moreover, neutrophil populations stimulated with GM-CSF and C5a showed increased survival compared with resting neutrophils, which did not generate NETs. In conclusion, mitochondrial DNA release by neutrophils and NET formation do not require neutrophil death and do also not limit the lifespan of these cells.

Collaboration


Dive into the Hans-Uwe Simon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kurt Blaser

Swiss Institute of Allergy and Asthma Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesca Levi-Schaffer

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Cezmi A. Akdis

Swiss Institute of Allergy and Asthma Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge