Barbara Heidenreich
German Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Heidenreich.
Proceedings of the National Academy of Sciences of the United States of America | 2013
P. Sivaramakrishna Rachakonda; Ismail Hosen; Petra J. de Verdier; Mahdi Fallah; Barbara Heidenreich; Charlotta Ryk; N. Peter Wiklund; Gunnar Steineck; Dirk Schadendorf; Kari Hemminki; Rajiv Kumar
Significance This study shows that the telomerase reverse transcriptase (TERT) promoter mutations, which create de novo E-twenty six/ternary complex factors (Ets/TCF) transcription binding sites, besides being the most common somatic genetic lesions, influence both survival and disease recurrence in bladder cancer patients. The effect of the TERT promoter mutations on both survival and recurrence is modified by a common polymorphism within the preexisting Ets binding site in the TERT promoter. The data were supported by the results from reporter assays carried out in two urothelial carcinoma cell lines. The findings of the study suggest that the TERT promoter mutations in conjunction with the common polymorphism have potential of being used as clinical biomarkers in bladder cancer. The telomerase reverse transcriptase (TERT) promoter, an important element of telomerase expression, has emerged as a target of cancer-specific mutations. Originally described in melanoma, the mutations in TERT promoter have been shown to be common in certain other tumor types that include glioblastoma, hepatocellular carcinoma, and bladder cancer. To fully define the occurrence and effect of the TERT promoter mutations, we investigated tumors from a well-characterized series of 327 patients with urothelial cell carcinoma of bladder. The somatic mutations, mainly at positions −124 and −146 bp from ATG start site that create binding motifs for E-twenty six/ternary complex factors (Ets/TCF), affected 65.4% of the tumors, with even distribution across different stages and grades. Our data showed that a common polymorphism rs2853669, within a preexisting Ets2 binding site in the TERT promoter, acts as a modifier of the effect of the mutations on survival and tumor recurrence. The patients with the mutations showed poor survival in the absence [hazard ratio (HR) 2.19, 95% confidence interval (CI) 1.02–4.70] but not in the presence (HR 0.42, 95% CI 0.18–1.01) of the variant allele of the polymorphism. The mutations in the absence of the variant allele were highly associated with the disease recurrence in patients with Tis, Ta, and T1 tumors (HR 1.85, 95% CI 1.11–3.08). The TERT promoter mutations are the most common somatic lesions in bladder cancer with clinical implications. The association of the mutations with patient survival and disease recurrence, subject to modification by a common polymorphism, can be a unique putative marker with individualized prognostic potential.
Current Opinion in Genetics & Development | 2014
Barbara Heidenreich; P. Sivaramakrishna Rachakonda; Kari Hemminki; Rajiv Kumar
Human telomerase reverse transcriptase (TERT) encodes a rate-limiting catalytic subunit of telomerase that maintains genomic integrity. TERT expression is mostly repressed in somatic cells with exception of proliferative cells in self-renewing tissues and cancer. Immortality associated with cancer cells has been attributed to telomerase over-expression. The precise mechanism behind the TERT activation in cancers has mostly remained unknown. The newly described germline and recurrent somatic mutations in melanoma and other cancers in the TERT promoter that create de novo E-twenty six/ternary complex factors (Ets/TCF) binding sites, provide an insight into the possible cause of tumor-specific increased TERT expression. In this review we discuss the discovery and possible implications of the TERT promoter mutations in melanoma and other cancers.
Nature Communications | 2014
Barbara Heidenreich; Eduardo Nagore; P. Sivaramakrishna Rachakonda; Zaida García-Casado; Celia Requena; V. Traves; Jürgen C. Becker; Nadem Soufir; Kari Hemminki; Rajiv Kumar
We previously reported a disease segregating causal germline mutation in a melanoma family and recurrent somatic mutations in metastasized tumours from unrelated patients in the core promoter region of the telomerase reverse transcriptase (TERT) gene. Here we show that the TERT promoter mutations, besides causing an increased gene expression, associate with increased patient age, increased Breslow thickness and tumour ulceration in 287 primary melanomas. The mutations are more frequent at both intermittently and chronically sun-exposed sites than non-exposed sites and tend to co-occur with BRAF and CDKN2A alterations. The association with parameters generally connected with poor outcome, coupled with high recurrence and mechanistic relevance, raises the possibility of the eventual use of TERT promoter mutations in the disease management.
Neuro-oncology | 2015
Matthias Simon; Ismail Hosen; Konstantinos Gousias; Sivaramakrishna Rachakonda; Barbara Heidenreich; Marco Gessi; Johannes Schramm; Kari Hemminki; Andreas Waha; Rajiv Kumar
BACKGROUND Activating somatic mutations in the promoter region of the telomerase reverse transcriptase gene (TERT) have been detected in several cancers. In this study we investigated the TERT promoter mutations and their impact on patient survival in World Health Organization grade IV glioblastoma multiforme (GBM). METHODS The TERT core promoter region containing the previously described mutations and a common functional polymorphism (rs2853669) was sequenced in tumors and blood samples from 192 GBM patients. O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status was assessed by pyrosequencing in 177 (92.2%) cases. Relevant clinical data were obtained from a prospectively maintained electronic database. RESULTS We detected specific (-124 C>T and -146 C>T) TERT promoter mutations in 143/178 (80.3%) primary GBM and 4/14 (28.6%) secondary GBM (P < .001). The presence of TERT mutations was associated with poor overall survival, and the effect was confined to the patients who did not carry the variant G-allele for the rs2853669 polymorphism. An exploratory analysis suggested that TERT mutations might be prognostic only in patients who had incomplete resections and no temozolomide chemotherapy. CONCLUSIONS In this study, specific TERT promoter mutations were markers of primary GBM and predicted patient survival in conjunction with a common functional polymorphism. The prognostic impact of TERT mutations was absent in patients with complete resections and temozolomide chemotherapy. If confirmed in additional studies, these findings may have clinical implications, that is, TERT mutations appear to characterize tumors that require aggressive treatment.
International Journal of Cancer | 2016
Eduardo Nagore; Barbara Heidenreich; Sivaramakrishna Rachakonda; Zaida García-Casado; Celia Requena; Virtudes Soriano; Christoph Frank; V. Traves; Esther Quecedo; Josefa Sanjuan-Gimenez; Kari Hemminki; Maria Teresa Landi; Rajiv Kumar
Despite advances in targeted therapies, the treatment of advanced melanoma remains an exercise in disease management, hence a need for biomarkers for identification of at‐risk primary melanoma patients. In this study, we aimed to assess the prognostic value of TERT promoter mutations in primary melanomas. Tumors from 300 patients with stage I/II melanoma were sequenced for TERT promoter and BRAF/NRAS mutations. Cumulative curves were drawn for patients with and without mutations with progression‐free and melanoma‐specific survival as outcomes. Cox proportional hazard regression models were used to determine the effect of the mutations on survivals. Individually, presence of TERT promoter and BRAF/NRAS mutations associated with poor disease‐free and melanoma‐specific survival with modification of the effect by the rs2853669 polymorphism within the TERT promoter. Hazard ratio (HR) for simultaneous occurrence of TERT promoter and BRAF/NRAS mutations for disease‐free survival was 2.3 (95% CI 1.2–4.4) and for melanoma‐specific survival 5.8 (95% CI 1.9–18.3). The effect of the mutations on melanoma‐specific survival in noncarriers of variant allele of the polymorphism was significant (HR 4.5, 95% CI 1.4–15.2) but could not be calculated for the carriers due to low number of events. The variant allele per se showed association with increased survival (HR 0.3, 95% CI 0.1–0.9). The data in this study provide preliminary evidence that TERT promoter mutations in combination with BRAF/NRAS mutations can be used to identify patients at risk of aggressive disease and the possibility of refinement of the classification with inclusion of the rs2853669 polymorphism within TERT promoter.
International Journal of Cancer | 2015
Ismail Hosen; P. Sivaramakrishna Rachakonda; Barbara Heidenreich; Raviprakash T. Sitaram; Börje Ljungberg; Göran Roos; Kari Hemminki; Rajiv Kumar
We screened promoter region of the telomerase reverse transcriptase (TERT) for activating somatic mutations in 188 tumors from patients with clear cell renal cell carcinoma (ccRCC). Twelve tumors (6.4%) carried a mutation within the core promoter region of the gene. The mutations were less frequent in high grade tumors compared to low grade tumors [odds ratio (OR) = 0.15, 95% confidence interval (CI) = 0.03–0.72, p = 0.02]. Multivariate analysis for cause specific survival showed statistically significant poor outcome in patients with TERT promoter mutations [hazard ratio (HR) = 2.90, 95% CI = 1.13–7.39, p = 0.03]. A common polymorphism (rs2853669) within the locus seemed to act as a modifier of the effect of the mutations on patient survival as the noncarriers of the variant allele with the TERT promoter mutations showed worst survival (HR = 3.34, 95% CI = 1.24–8.98, p = 0.02). We also measured relative telomere length (RTL) in tumors and difference between tumors with and without the TERT promoter mutations was not statistically significant. Similarly, no difference in patient survival based on RTL in tumors was observed. Our study showed a relatively low frequency of TERT promoter mutations in ccRCC. Nevertheless, patients with the mutations, particularly in the absence of the rs2853669 variant showed the worst disease‐specific survival. Thus, it is possible that the TERT promoter mutations define a small subset of tumors with an aggressive behavior.
International Journal of Cancer | 2015
Ismail Hosen; P. Sivaramakrishna Rachakonda; Barbara Heidenreich; Petra J. de Verdier; Charlotta Ryk; Gunnar Steineck; Kari Hemminki; Rajiv Kumar
Mutations in the promoter of the telomerase reverse transcriptase (TERT) and fibroblast growth factor receptor 3 (FGFR3) genes constitute the most recurrent somatic alterations in urothelial carcinoma of bladder. In this study, we screened DNA from 327 urothelial bladder carcinomas from well‐documented patients, with different stages and grades and known TERT promoter mutational status, for FGFR3 alterations and measured relative telomere length (RTL). Although, the frequency of the TERT promoter mutations was higher than those in FGFR3; however, the alterations at the two loci occurred together more frequently than per chance [Odds ratio (OR) = 4.93, 95% CI = 2.72–8.92, p < 0.0001]. While tumors with TERT promoter and FGFR3 mutations had shorter RTL than those without mutations (p < 0.0001), the TERT promoter mutations in conjunction with the common allele of the rs2853669 polymorphism defined sub‐group of patients with an observed decreased overall survival (OR = 2.15, 95% CI = 1.00–4.61) and increased recurrence in patients with TaG1+TaG2 disease categories (OR = 3.68, 95%CI = 1.12–12.05). The finding of shorter telomeres in tumors with TERT promoter and/or FGFR3 mutations than without mutations implies mechanistic relevance of telomere biology in cancer progression. The observed association with recurrence and survival shows that the TERT promoter mutations can potentially be used as markers to refine selection of patients for different treatments. The overwhelming frequency of the TERT promoter mutations also represents a case for development of an eventual therapeutic target.
Mutation Research-reviews in Mutation Research | 2017
Barbara Heidenreich; Rajiv Kumar
Telomere repeats at chromosomal ends, critical to genome integrity, are maintained through an elaborate network of proteins and pathways. Shelterin complex proteins shield telomeres from induction of DNA damage response to overcome end protection problem. A specialized ribonucleic protein, telomerase, maintains telomere homeostasis through repeat addition to counter intrinsic shortcomings of DNA replication that leads to gradual sequence shortening in successive mitoses. The biogenesis and recruitment of telomerase composed of telomerase reverse transcriptase (TERT) subunit and an RNA component, takes place through the intricate machinery that involves an elaborate number of molecules. The synthesis of telomeres remains a controlled and limited process. Inherited mutations in the molecules involved in the process directly or indirectly cause telomeropathies. Telomerase, while present in stem cells, is deactivated due to epigenetic silencing of the rate-limiting TERT upon differentiation in most of somatic cells with a few exceptions. However, in most of the cancer cells telomerase reactivation remains a ubiquitous process and constitutes one of the major hallmarks. Discovery of mutations within the core promoter of the TERT gene that create de novo binding sites for E-twenty-six (ETS) transcription factors provided a mechanism for cancer-specific telomerase reactivation. The TERT promoter mutations occur mainly in tumors from tissues with low rates of self-renewal. In melanoma, glioma, hepatocellular carcinoma, urothelial carcinoma and others, the promoter mutations have been shown to define subsets of patients with adverse disease outcomes, associate with increased transcription of TERT, telomerase reactivation and affect telomere length; in stem cells the mutations inhibit TERT silencing following differentiation into adult cells. The TERT promoter mutations cause an epigenetic switch on the mutant allele along with recruitment of pol II following the binding of GABPA/B1 complex that leads to mono-allelic expression. Thus, the TERT promoter mutations hold potential as biomarkers as well as future therapeutic targets.
Oncotarget | 2015
Evgeniya Denisova; Barbara Heidenreich; Eduardo Nagore; P. Sivaramakrishna Rachakonda; Ismail Hosen; Ivana Akrap; V. Traves; Zaida García-Casado; José Antonio López-Guerrero; Celia Requena; Onofre Sanmartín; C. Serra-Guillén; Beatriz Llombart; Carlos Guillén; Jose Ferrando; Enrique Gimeno; Alfred Nordheim; Kari Hemminki; Rajiv Kumar
Recent reports suggested frequent occurrence of cancer associated somatic mutations within regulatory elements of the genome. Based on initial exome sequencing of 21 melanomas, we report frequent somatic mutations in skin cancers in a bidirectional promoter of diphthamide biosynthesis 3 (DPH3) and oxidoreductase NAD-binding domain containing 1 (OXNAD1) genes. The UV-signature mutations occurred at sites adjacent and within a binding motif for E-twenty six/ternary complex factors (Ets/TCF), at −8 and −9 bp from DPH3 transcription start site. Follow up screening of 586 different skin lesions showed that the DPH3 promoter mutations were present in melanocytic nevi (2/114; 2%), melanoma (30/304; 10%), basal cell carcinoma of skin (BCC; 57/137; 42%) and squamous cell carcinoma of skin (SCC; 12/31; 39%). Reporter assays carried out in one melanoma cell line for DPH3 and OXNAD1 orientations showed statistically significant increased promoter activity due to −8/−9CC > TT tandem mutations; although, no effect of the mutations on DPH3 and OXNAD1 transcription in tumors was observed. The results from this study show occurrence of frequent somatic non-coding mutations adjacent to a pre-existing binding site for Ets transcription factors within the directional promoter of DPH3 and OXNAD1 genes in three major skin cancers. The detected mutations displayed typical UV signature; however, the functionality of the mutations remains to be determined.
Oncotarget | 2016
Andrelou F. Vallarelli; P. Sivaramakrishna Rachakonda; Jocelyne André; Barbara Heidenreich; Laurence Riffaud; Armand Bensussan; Rajiv Kumar; Nicolas Dumaz
The mechanism of telomerase re-activation in cancer had remained elusive until the discovery of frequent mutations in the promoter of the TERT gene that encodes the catalytic reverse transcriptase subunit of telomerase. We investigated the regulation of TERT expression in melanoma cell lines and our results show that promoter mutations render TERT expression dependent on MAPK activation due to oncogenic BRAF or NRAS mutations. Mutations in the TERT promoter create binding sites for ETS transcription factors. ETS1, expressed in melanoma cell lines, undergoes activating phosphorylation by ERK at Thr38 residue as a consequence of constitutively activated MAPK pathway. We demonstrate that ETS1 binds on the mutated TERT promoter leading to the re-expression of the gene. The inhibition of ETS1 resulted in reduced TERT expression. We provide evidence that the TERT promoter mutations provide a direct link between TERT expression and MAPK pathway activation due to BRAF or NRAS mutations via the transcription factor ETS1.