Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthias Simon is active.

Publication


Featured researches published by Matthias Simon.


IEEE Transactions on Nuclear Science | 2009

Status of Direct Conversion Detectors for Medical Imaging With X-Rays

Michael Overdick; Christian Bäumer; Klaus Jürgen Engel; Johannes Fink; Christoph Herrmann; H. Krüger; Matthias Simon; Roger Steadman; Gnter Zeitler

Imaging detectors for medical X-ray and computed tomography (CT) applications have undergone many improvements and technology changes over time. But most (dynamic) detectors sold in this field still rely on indirect conversion, using scintillators and photodiodes to convert the X-ray quanta ultimately into electrical signals. Direct conversion detectors promise very high spatial resolution and high signal-to-noise ratios. Some direct conversion materials may allow for counting or even energy resolving detection of the X-ray quanta. Based on this, for example spectrally resolving CT systems are becoming an interesting option for the next decade. This contribution highlights the requirements of advanced medical X-ray and CT imaging and reviews examples of status and progress in the field. The emphasis is on the direct conversion sensors for pixelated detectors, but considerations on read-out concepts and on associated challenges such as interconnects will also be presented. Finally, the most burning issues, such as count rate limitations and polarization effects, will be discussed from an application point of view.


nuclear science symposium and medical imaging conference | 2004

Analysis of lead oxide (PbO) layers for direct conversion X-ray detection

Matthias Simon; Stefan Peter Grabowski; Bernd Menser; Gerd Much; A. Nascetti; Michael Overdick; Detlef Uwe Wiechert; Ronald A. Ford; Anthony R. Franklin; M. J. Powell

Lead oxide (PbO) is a candidate direct conversion material for medical X-ray applications. We produced various samples and detectors with thick PbO layers. X-ray performance data such as dark current, charge generation yield and temporal behavior were evaluated on small samples. The influence of the metal contacts was studied in detail. We also covered large a-Si thin-film transistor (TFT)-plates with PbO. Imaging results from a large detector with an active area of 18 cm /spl times/ 20 cm are presented. The detector has 960 /spl times/ 1080 pixels with a pixel pitch of 184 /spl mu/m. The modulation transfer function at the Nyquist frequency of 2.72 linepairs/mm is 50%. Finally, a full size X-ray image is presented.


Medical Imaging 2004: Physics of Medical Imaging | 2004

PbO as direct conversion X-ray detector material

Matthias Simon; Ronald A. Ford; Anthony R. Franklin; Stefan Peter Grabowski; Bernd Menser; Gerd Much; A. Nascetti; Michael Overdick; M. J. Powell; Detlef Uwe Wiechert

A flat X-ray detector with lead oxide (PbO) as direct conversion material has been developed. The material lead oxide, which has a very high X-ray absorption, was analysed in detail including Raman spectroscopy and electron microscopy. X-ray performance data such as dark current, charge yield and temporal behaviour were evaluated on small functional samples. A process to cover a-Si TFT-plates with PbO has been developed. We present imaging results from a large detector with an active area of 18 × 20 cm2. The detector has 1080 × 960 pixels with a pixel pitch of 184 μm. The linearity of detector response was verified. The NPS was determined with a total dark noise as low as 1800 electrons/pixel. The MTF was measured with two different methods: first with the analysis of a square wave phantom and second with a narrow slit. The MTF at the Nyquist frequency of 2.72 lp/mm was 50 %. We calculated first DQE values of our prototype detector plates. Full size images of anatomic and technical phantoms are shown.


Medical Physics | 2008

X‐ray imaging performance of scintillator‐filled silicon pore arrays

Matthias Simon; Klaus Juergen Engel; Bernd Menser; Xavier Badel; Jan Linnros

The need for fine detail visibility in various applications such as dental imaging, mammography, but also neurology and cardiology, is the driver for intensive efforts in the development of new x-ray detectors. The spatial resolution of current scintillator layers is limited by optical diffusion. This limitation can be overcome by a pixelation, which prevents optical photons from crossing the interface between two neighboring pixels. In this work, an array of pores was etched in a silicon wafer with a pixel pitch of 50 microm. A very high aspect ratio was achieved with wall thicknesses of 4-7 microm and pore depths of about 400 microm. Subsequently, the pores were filled with Tl-doped cesium iodide (CsI:Tl) as a scintillator in a special process, which includes powder melting and solidification of the CsI. From the sample geometry and x-ray absorption measurement the pore fill grade was determined to be 75%. The scintillator-filled samples have a circular active area of 16 mm diameter. They are coupled with an optical sensor binned to the same pixel pitch in order to measure the x-ray imaging performance. The x-ray sensitivity, i.e., the light output per absorbed x-ray dose, is found to be only 2.5%-4.5% of a commercial CsI-layer of similar thickness, thus very low. The efficiency of the pores to transport the generated light to the photodiode is estimated to be in the best case 6.5%. The modulation transfer function is 40% at 4 lp/mm and 10%-20% at 8 lp/mm. It is limited most likely by the optical gap between scintillator and sensor and by K-escape quanta. The detective quantum efficiency (DQE) is determined at different beam qualities and dose settings. The maximum DQE(0) is 0.28, while the x-ray absorption with the given thickness and fill factor is 0.57. High Swank noise is suspected to be the reason, mainly caused by optical scatter inside the CsI-filled pores. The results are compared to Monte Carlo simulations of the photon transport inside the pore array structure. In addition, some x-ray images of technical and anatomical phantoms are shown. This work shows that scintillator-filled pore arrays can provide x-ray imaging with high spatial resolution, but are not suitable in their current state for most of the applications in medical imaging, where increasing the x-ray doses cannot be tolerated.


IEEE Transactions on Electron Devices | 2016

X-Ray Detector-on-Plastic With High Sensitivity Using Low Cost, Solution-Processed Organic Photodiodes

Gerwin H. Gelinck; Abhishek Kumar; Date Moet; Jan-Laurens van der Steen; Albert J. J. M. van Breemen; Santosh Shanmugam; A. Langen; Jan Gilot; Pim Groen; Ronn Andriessen; Matthias Simon; Walter Ruetten; Alexander Ulrich Douglas; Rob Raaijmakers; Pawel E. Malinowski; Kris Myny

We made and characterized an X-ray detector on a 25-μm-thick plastic substrate that is capable of medicalgrade performance. As an indirect conversion flat panel detector, it combined a standard scintillator with an organic photodetector (OPD) layer and oxide thin-film transistor backplane. Using solution-processed organic bulk heterojunction photodiode rather than the usual amorphous silicon, process temperature is reduced to be compatible with plastic film substrates, and a number of costly lithography steps are eliminated, opening the door to lower production costs. With dark currents as low as 1 pA/mm2 and sensitivity of 0.2 A/W the OPD also meets functional requirements: the proof-of-concept detector delivers high-resolution, dynamic images at 10 frames/s, and 200 pixels/in using X-ray doses as low as 3 μGy/frame.


ieee nuclear science symposium | 2008

Towards direct conversion detectors for medical imaging with X-rays

Michael Overdick; Christian Bäumer; Klaus Jürgen Engel; Johannes Fink; Christoph Herrmann; H. Krüger; Matthias Simon; Roger Steadman; Günter Zeitler

Imaging detectors for medical X-ray and Computed Tomography (CT) applications have undergone many improvements and technology changes over time. But most (dynamic) detectors sold in this field still rely on indirect conversion, using scintillators and photodiodes to convert the X-ray quanta ultimately into electrical signals. Direct conversion detectors promise very high spatial resolution and high signal-to-noise ratios. Some direct conversion materials may allow for counting or even energy resolving detection of the X-ray quanta. Based on this, for example spectrally resolving CT systems are becoming an interesting option for the next decade. This contribution highlights the requirements of advanced medical X-ray and CT imaging and shows examples of status and progress in the field. The emphasis is on the direct conversion sensors for pixelated detectors, but considerations on read-out concepts and on associated challenges such as interconnects will also be presented. Finally, the most burning issues, such as count rate limitations and polarization effects, will be discussed from an application point of view.


Medical Imaging 2003: Physics of Medical Imaging | 2003

Flat detector with integrated dose sensing

Michael Overdick; Ronald A. Ford; Anthony R. Franklin; A. Nascetti; M. J. Powell; Walter Ruetten; Matthias Simon

Integrated dose sensing in Flat Detectors allows a during pulse control of the X-ray illumination without the need for external dose sensing devices. Standard designs of Flat Detectors do not allow during pulse dose sensing since the information is collected from the pixels only in the read-out phase after the X-ray illumination. This paper introduces a special detector plate design for obtaining dose sensing information directly from the X-ray detector while the X-ray pulse is being applied. This dose sensing information is read at a lower spatial resolution than the actual X-ray image but with a sub-millisecond temporal resolution. The dose sensing operates without any additional radiation burden on the patient and without attenuation of the image information. Experimental results from a small area (4x4 cm2) detector are presented, including an analysis of noise, linearity and cross-talk.


Medical Imaging 2005: Physics of Medical Imaging | 2005

Linear system models for lag in flat dynamic x-ray detectors

Bernd Menser; Raoul J. M. Bastiaens; A. Nascetti; Michael Overdick; Matthias Simon

The detective quantum efficiency (DQE) is regarded as a suitable parameter to assess the global imaging performance of an x-ray detector. However, residual signals increase the signal-to-noise ratio and therefore artificially increase the measured DQE compared to a lag-free system. In this paper, the impact of lag on the DQE is described for two different sources of lag using linear system models. In addition to the commonly used temporal filtering model for trapping, an increase of the dark current is considered as another potential source of lag. It is shown that the assumed lag model has a crucial impact on the choice of an adequate lag estimation method. Examples are given using the direct conversion material PbO. It turns out that the most general approach is the evaluation of the temporal noise power spectrum. A new algorithm is proposed for the crucial issue of robustly estimating the power spectrum at frequency zero.


Proceedings of SPIE | 2014

X-ray imaging sensor arrays on foil using solution processed organic photodiodes and organic transistors

Abhishek Kumar; Date Moet; Jan-Laurens van der Steen; Ashutosh Tripathi; Francisco Gonzalez Rodriguez; Joris Maas; Matthias Simon; Walter Reutten; Alexander Ulrich Douglas; Rob Raaijmakers; Pawel Malinowski; Kris Myny; Umar Shafique; Ronn Andriessen; Paul Heremans; Gerwin H. Gelinck

We demonstrate organic imaging sensor arrays fabricated on flexible plastic foil with the solution processing route for both photodiodes and thin film transistors. We used the photovoltaic P3HT:PCBM blend for fabricating the photodiodes using spin coating and pentacene as semiconductor material for the TFTs. Photodiodes fabricated with P3HT:PCBM absorb in the green part of the visible spectrum which matches with the typical scintillator output wavelength. The arrays consist of 32x32 pixels with variation in pixel resolution of 200μmx200μm, 300μmx300μm and of 1mmx1mm. The accurate reproducibility of shadow images of the objects demonstrates the potential of these arrays for imaging purposes. We also demonstrate that the crosstalk is relatively insignificant despite the fact that the active photodiode forms a continuous layer in the array. Since both photodiodes and TFTs are made of organic material, they are processed at low temperatures below 150°C on foil which means that these imaging sensors can be flexible, light weight and low cost when compared to conventional amorphous silicon based imaging sensors on rigid substrates. In combination with a scintillator on top of the arrays, we show the potential of these arrays for the X-ray imaging applications.


IEEE Transactions on Nuclear Science | 2010

Correction to "Status of Direct Conversion Detectors for Medical Imaging With X-Rays" [Aug 09 1800-1809]

Michael Overdick; Christian Bäumer; Klaus Jürgen Engel; Johannes Fink; Christoph Hermann; H. Krüger; Matthias Simon; Roger Steadman; Günter Zeitler

In the above titled paper (ibid., vol. 56, no. 4, pp. 1800-1809, Aug. 09), an error appeared in Table III. A corrected version of Table III is presented here.

Collaboration


Dive into the Matthias Simon's collaboration.

Top Co-Authors

Avatar

A. Nascetti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Abhishek Kumar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge