Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Hutter is active.

Publication


Featured researches published by Barbara Hutter.


Nature | 2013

Signatures of mutational processes in human cancer

Ludmil B. Alexandrov; Serena Nik-Zainal; David C. Wedge; Samuel Aparicio; Sam Behjati; Andrew V. Biankin; Graham R. Bignell; Niccolo Bolli; Åke Borg; Anne Lise Børresen-Dale; Sandrine Boyault; Birgit Burkhardt; Adam Butler; Carlos Caldas; Helen Davies; Christine Desmedt; Roland Eils; Jórunn Erla Eyfjörd; John A. Foekens; Mel Greaves; Fumie Hosoda; Barbara Hutter; Tomislav Ilicic; Sandrine Imbeaud; Marcin Imielinsk; Natalie Jäger; David T. W. Jones; David Jones; Stian Knappskog; Marcel Kool

All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.


Nature | 2012

Dissecting the genomic complexity underlying medulloblastoma

David T. W. Jones; Natalie Jäger; Marcel Kool; Thomas Zichner; Barbara Hutter; Marc Sultan; Yoon-Jae Cho; Trevor J. Pugh; Volker Hovestadt; Adrian M. Stütz; Tobias Rausch; Hans-Jörg Warnatz; Marina Ryzhova; Sebastian Bender; Dominik Sturm; Sabrina Pleier; Huriye Cin; Elke Pfaff; Laura Sieber; Andrea Wittmann; Marc Remke; Hendrik Witt; Sonja Hutter; Theophilos Tzaridis; Joachim Weischenfeldt; Benjamin Raeder; Meryem Avci; Vyacheslav Amstislavskiy; Marc Zapatka; Ursula Weber

Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour–normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.


Nature Genetics | 2013

Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma

David T. W. Jones; Barbara Hutter; Natalie Jäger; Andrey Korshunov; Marcel Kool; Hans-Jörg Warnatz; Thomas Zichner; Sally R. Lambert; Marina Ryzhova; Dong Anh Khuong Quang; Adam M. Fontebasso; Adrian M. Stütz; Sonja Hutter; Marc Zuckermann; Dominik Sturm; Jan Gronych; Bärbel Lasitschka; Sabine Schmidt; Huriye Şeker-Cin; Hendrik Witt; Marc Sultan; Meryem Ralser; Paul A. Northcott; Volker Hovestadt; Sebastian Bender; Elke Pfaff; Sebastian Stark; Damien Faury; Jeremy Schwartzentruber; Jacek Majewski

Pilocytic astrocytoma, the most common childhood brain tumor, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression and often becoming a chronic disease with substantial morbidities. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.


Nature Communications | 2015

A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing

Tyler Alioto; Ivo Buchhalter; Sophia Derdak; Barbara Hutter; Matthew Eldridge; Eivind Hovig; Lawrence E. Heisler; Timothy Beck; Jared T. Simpson; Laurie Tonon; Anne Sophie Sertier; Ann Marie Patch; Natalie Jäger; Philip Ginsbach; Ruben M. Drews; Nagarajan Paramasivam; Rolf Kabbe; Sasithorn Chotewutmontri; Nicolle Diessl; Christopher Previti; Sabine Schmidt; Benedikt Brors; Lars Feuerbach; Michael Heinold; Susanne Gröbner; Andrey Korshunov; Patrick Tarpey; Adam Butler; Jonathan Hinton; David Jones

As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy.


Nature | 2017

The whole-genome landscape of medulloblastoma subtypes

Paul A. Northcott; Ivo Buchhalter; A. Sorana Morrissy; Volker Hovestadt; Joachim Weischenfeldt; Tobias Ehrenberger; Susanne Gröbner; Maia Segura-Wang; Thomas Zichner; Vasilisa A. Rudneva; Hans-Jörg Warnatz; Nikos Sidiropoulos; Aaron H. Phillips; Steven E. Schumacher; Kortine Kleinheinz; Sebastian M. Waszak; Serap Erkek; David Jones; Barbara C. Worst; Marcel Kool; Marc Zapatka; Natalie Jäger; Lukas Chavez; Barbara Hutter; Matthias Bieg; Nagarajan Paramasivam; Michael Heinold; Zuguang Gu; Naveed Ishaque; Christina Jäger-Schmidt

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and ‘enhancer hijacking’ events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.


PLOS ONE | 2013

Coverage bias and sensitivity of variant calling for four whole-genome sequencing technologies.

Nora Rieber; Marc Zapatka; Bärbel Lasitschka; David T. W. Jones; Paul A. Northcott; Barbara Hutter; Natalie Jäger; Marcel Kool; Michael D. Taylor; Peter Lichter; Stefan M. Pfister; Stephan Wolf; Benedikt Brors; Roland Eils

The emergence of high-throughput, next-generation sequencing technologies has dramatically altered the way we assess genomes in population genetics and in cancer genomics. Currently, there are four commonly used whole-genome sequencing platforms on the market: Illumina’s HiSeq2000, Life Technologies’ SOLiD 4 and its completely redesigned 5500xl SOLiD, and Complete Genomics’ technology. A number of earlier studies have compared a subset of those sequencing platforms or compared those platforms with Sanger sequencing, which is prohibitively expensive for whole genome studies. Here we present a detailed comparison of the performance of all currently available whole genome sequencing platforms, especially regarding their ability to call SNVs and to evenly cover the genome and specific genomic regions. Unlike earlier studies, we base our comparison on four different samples, allowing us to assess the between-sample variation of the platforms. We find a pronounced GC bias in GC-rich regions for Life Technologies’ platforms, with Complete Genomics performing best here, while we see the least bias in GC-poor regions for HiSeq2000 and 5500xl. HiSeq2000 gives the most uniform coverage and displays the least sample-to-sample variation. In contrast, Complete Genomics exhibits by far the smallest fraction of bases not covered, while the SOLiD platforms reveal remarkable shortcomings, especially in covering CpG islands. When comparing the performance of the four platforms for calling SNPs, HiSeq2000 and Complete Genomics achieve the highest sensitivity, while the SOLiD platforms show the lowest false positive rate. Finally, we find that integrating sequencing data from different platforms offers the potential to combine the strengths of different technologies. In summary, our results detail the strengths and weaknesses of all four whole-genome sequencing platforms. It indicates application areas that call for a specific sequencing platform and disallow other platforms. This helps to identify the proper sequencing platform for whole genome studies with different application scopes.


Nature Medicine | 2016

Recurrent MET fusion genes represent a drug target in pediatric glioblastoma

Sebastian Bender; Jan Gronych; Hans-Jörg Warnatz; Barbara Hutter; Susanne Gröbner; Marina Ryzhova; Elke Pfaff; Volker Hovestadt; Florian Weinberg; Sebastian Halbach; Marcel Kool; Paul A. Northcott; Dominik Sturm; Lynn Bjerke; Thomas Zichner; Adrian M. Stütz; Kathrin Schramm; Bingding Huang; Ivo Buchhalter; Michael Heinold; Thomas Risch; Barbara C. Worst; Cornelis M. van Tilburg; Ursula Weber; Marc Zapatka; Benjamin Raeder; David Milford; Sabine Heiland; Christof von Kalle; Christopher Previti

Pediatric glioblastoma is one of the most common and most deadly brain tumors in childhood. Using an integrative genetic analysis of 53 pediatric glioblastomas and five in vitro model systems, we identified previously unidentified gene fusions involving the MET oncogene in ∼10% of cases. These MET fusions activated mitogen-activated protein kinase (MAPK) signaling and, in cooperation with lesions compromising cell cycle regulation, induced aggressive glial tumors in vivo. MET inhibitors suppressed MET tumor growth in xenograft models. Finally, we treated a pediatric patient bearing a MET-fusion-expressing glioblastoma with the targeted inhibitor crizotinib. This therapy led to substantial tumor shrinkage and associated relief of symptoms, but new treatment-resistant lesions appeared, indicating that combination therapies are likely necessary to achieve a durable clinical response.


Blood | 2015

Recurrent CDKN1B (p27) mutations in hairy cell leukemia.

Sascha Dietrich; Jennifer Hüllein; Stanley Chun-Wei Lee; Barbara Hutter; David Gonzalez; Sandrine Jayne; Martin J. S. Dyer; Małgorzata Oleś; Monica Else; Xiyang Liu; Mikolaj Slabicki; Bian Wu; Xavier Troussard; Jan Dürig; Mindaugas Andrulis; Claire Dearden; Christof von Kalle; Martin Granzow; Anna Jauch; Stefan Fröhling; Wolfgang Huber; Manja Meggendorfer; Torsten Haferlach; Anthony D. Ho; Daniela Richter; Benedikt Brors; Hanno Glimm; Estella Matutes; Omar Abdel Wahab; Thorsten Zenz

Hairy cell leukemia (HCL) is marked by near 100% mutational frequency of BRAFV600E mutations. Recurrent cooperating genetic events that may contribute to HCL pathogenesis or affect the clinical course of HCL are currently not described. Therefore, we performed whole exome sequencing to explore the mutational landscape of purine analog refractory HCL. In addition to the disease-defining BRAFV600E mutations, we identified mutations in EZH2, ARID1A, and recurrent inactivating mutations of the cell cycle inhibitor CDKN1B (p27). Targeted deep sequencing of CDKN1B in a larger cohort of HCL patients identify deleterious CDKN1B mutations in 16% of patients with HCL (n = 13 of 81). In 11 of 13 patients the CDKN1B mutation was clonal, implying an early role of CDKN1B mutations in the pathogenesis of HCL. CDKN1B mutations were not found to impact clinical characteristics or outcome in this cohort. These data identify HCL as having the highest frequency of CDKN1B mutations among cancers and identify CDNK1B as the second most common mutated gene in HCL. Moreover, given the known function of CDNK1B, these data suggest a novel role for alterations in regulation of cell cycle and senescence in HCL with CDKN1B mutations.


Journal of Clinical Investigation | 2014

BRAF inhibitor-associated ERK activation drives development of chronic lymphocytic leukemia.

Niuscha Yaktapour; Frank Meiss; Justin Mastroianni; Thorsten Zenz; Hana Andrlová; Nimitha R. Mathew; Rainer Claus; Barbara Hutter; Stefan Fröhling; Benedikt Brors; Dietmar Pfeifer; Milena Pantic; Ingrid Bartsch; Timo S. Spehl; Philipp T. Meyer; Justus Duyster; Katja Zirlik; Tilman Brummer; Robert Zeiser

Patients with BRAFV600E/K-driven melanoma respond to the BRAF inhibitor vemurafenib due to subsequent deactivation of the proliferative RAS/RAF/MEK/ERK pathway. In BRAF WT cells and those with mutations that activate or result in high levels of the BRAF activator RAS, BRAF inhibition can lead to ERK activation, resulting in tumorigenic transformation. We describe a patient with malignant melanoma who developed chronic lymphocytic leukemia (CLL) in the absence of RAS mutations during vemurafenib treatment. BRAF inhibition promoted patient CLL proliferation in culture and in murine xenografts and activated MEK/ERK in primary CLL cells from additional patients. BRAF inhibitor-driven ERK activity and CLL proliferation required B cell antigen receptor (BCR) activation, as inhibition of the BCR-proximal spleen tyrosine kinase (SYK) reversed ERK hyperactivation and proliferation of CLL cells from multiple patients, while inhibition of the BCR-distal Bruton tyrosine kinase had no effect. Additionally, the RAS-GTP/RAS ratio in primary CLL cells exposed to vemurafenib was reduced upon SYK inhibition. BRAF inhibition increased mortality and CLL expansion in mice harboring CLL xenografts; however, SYK or MEK inhibition prevented CLL proliferation and increased animal survival. Together, these results suggest that BRAF inhibitors promote B cell malignancies in the absence of obvious mutations in RAS or other receptor tyrosine kinases and provide a rationale for combined BRAF/MEK or BRAF/SYK inhibition.


Leukemia | 2016

Cooperation of BRAF F595L and mutant HRAS in histiocytic sarcoma provides new insights into oncogenic BRAF signaling

M Kordes; Michael Röring; Christoph Heining; Sandra Braun; Barbara Hutter; Daniela Richter; Christina Geörg; Claudia Scholl; Stefan Gröschel; W Roth; Andreas Rosenwald; E Geissinger; C. Von Kalle; Dirk Jäger; Benedikt Brors; Wilko Weichert; C. Grüllich; Hanno Glimm; Tilman Brummer; Stefan Fröhling

Activating BRAF mutations, in particular V600E/K, drive many cancers and are considered mutually exclusive with mutant RAS, whereas inactivating BRAF mutations in the D594F595G596 motif cooperate with RAS via paradoxical MEK/ERK activation. Due to the increasing use of comprehensive tumor genomic profiling, many non-V600 BRAF mutations are being detected whose functional consequences and therapeutic actionability are often unknown. We investigated an atypical BRAF mutation, F595L, which was identified along with mutant HRAS in histiocytic sarcoma and also occurs in epithelial cancers, melanoma and neuroblastoma, and determined its interaction with mutant RAS. Unlike other DFG motif mutants, BRAFF595L is a gain-of-function variant with intermediate activity that does not act paradoxically, but nevertheless cooperates with mutant RAS to promote oncogenic signaling, which is efficiently blocked by pan-RAF and MEK inhibitors. Mutation data from patients and cell lines show that BRAFF595L, as well as other intermediate-activity BRAF mutations, frequently coincide with mutant RAS in various cancers. These data define a distinct class of activating BRAF mutations, extend the spectrum of patients with systemic histiocytoses and other malignancies who are candidates for therapeutic blockade of the RAF-MEK-ERK pathway and underscore the value of comprehensive genomic testing for uncovering the vulnerabilities of individual tumors.

Collaboration


Dive into the Barbara Hutter's collaboration.

Top Co-Authors

Avatar

Benedikt Brors

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Hanno Glimm

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Marcel Kool

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Natalie Jäger

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Stefan Fröhling

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

David T. W. Jones

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Christoph Heining

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Martina Fröhlich

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Matthias Schlesner

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Stephan Wolf

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge