Matthias Schlesner
German Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthias Schlesner.
Nature | 2013
Ludmil B. Alexandrov; Serena Nik-Zainal; David C. Wedge; Samuel Aparicio; Sam Behjati; Andrew V. Biankin; Graham R. Bignell; Niccolo Bolli; Åke Borg; Anne Lise Børresen-Dale; Sandrine Boyault; Birgit Burkhardt; Adam Butler; Carlos Caldas; Helen Davies; Christine Desmedt; Roland Eils; Jórunn Erla Eyfjörd; John A. Foekens; Mel Greaves; Fumie Hosoda; Barbara Hutter; Tomislav Ilicic; Sandrine Imbeaud; Marcin Imielinsk; Natalie Jäger; David T. W. Jones; David Jones; Stian Knappskog; Marcel Kool
All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.
Nature Genetics | 2013
David T. W. Jones; Barbara Hutter; Natalie Jäger; Andrey Korshunov; Marcel Kool; Hans-Jörg Warnatz; Thomas Zichner; Sally R. Lambert; Marina Ryzhova; Dong Anh Khuong Quang; Adam M. Fontebasso; Adrian M. Stütz; Sonja Hutter; Marc Zuckermann; Dominik Sturm; Jan Gronych; Bärbel Lasitschka; Sabine Schmidt; Huriye Şeker-Cin; Hendrik Witt; Marc Sultan; Meryem Ralser; Paul A. Northcott; Volker Hovestadt; Sebastian Bender; Elke Pfaff; Sebastian Stark; Damien Faury; Jeremy Schwartzentruber; Jacek Majewski
Pilocytic astrocytoma, the most common childhood brain tumor, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression and often becoming a chronic disease with substantial morbidities. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.
Nature Genetics | 2012
Julia Richter; Matthias Schlesner; Steve Hoffmann; Markus Kreuz; Ellen Leich; Birgit Burkhardt; Maciej Rosolowski; Ole Ammerpohl; Rabea Wagener; Stephan H. Bernhart; Dido Lenze; Monika Szczepanowski; Maren Paulsen; Simone Lipinski; Robert B. Russell; Sabine Adam-Klages; Gordana Apic; Alexander Claviez; Dirk Hasenclever; Volker Hovestadt; Nadine Hornig; Jan O. Korbel; Dieter Kube; David Langenberger; Chris Lawerenz; Jasmin Lisfeld; Katharina Meyer; Simone Picelli; Jordan Pischimarov; Bernhard Radlwimmer
Burkitt lymphoma is a mature aggressive B-cell lymphoma derived from germinal center B cells. Its cytogenetic hallmark is the Burkitt translocation t(8;14)(q24;q32) and its variants, which juxtapose the MYC oncogene with one of the three immunoglobulin loci. Consequently, MYC is deregulated, resulting in massive perturbation of gene expression. Nevertheless, MYC deregulation alone seems not to be sufficient to drive Burkitt lymphomagenesis. By whole-genome, whole-exome and transcriptome sequencing of four prototypical Burkitt lymphomas with immunoglobulin gene (IG)-MYC translocation, we identified seven recurrently mutated genes. One of these genes, ID3, mapped to a region of focal homozygous loss in Burkitt lymphoma. In an extended cohort, 36 of 53 molecularly defined Burkitt lymphomas (68%) carried potentially damaging mutations of ID3. These were strongly enriched at somatic hypermutation motifs. Only 6 of 47 other B-cell lymphomas with the IG-MYC translocation (13%) carried ID3 mutations. These findings suggest that cooperation between ID3 inactivation and IG-MYC translocation is a hallmark of Burkitt lymphomagenesis.
Bioinformatics | 2014
Zuguang Gu; Lei Gu; Roland Eils; Matthias Schlesner; Benedikt Brors
SUMMARY Circular layout is an efficient way for the visualization of huge amounts of genomic information. Here we present the circlize package, which provides an implementation of circular layout generation in R as well as an enhancement of available software. The flexibility of this package is based on the usage of low-level graphics functions such that self-defined high-level graphics can be easily implemented by users for specific purposes. Together with the seamless connection between the powerful computational and visual environment in R, circlize gives users more convenience and freedom to design figures for better understanding genomic patterns behind multi-dimensional data. AVAILABILITY AND IMPLEMENTATION circlize is available at the Comprehensive R Archive Network (CRAN): http://cran.r-project.org/web/packages/circlize/
Bioinformatics | 2016
Zuguang Gu; Roland Eils; Matthias Schlesner
UNLABELLED Parallel heatmaps with carefully designed annotation graphics are powerful for efficient visualization of patterns and relationships among high dimensional genomic data. Here we present the ComplexHeatmap package that provides rich functionalities for customizing heatmaps, arranging multiple parallel heatmaps and including user-defined annotation graphics. We demonstrate the power of ComplexHeatmap to easily reveal patterns and correlations among multiple sources of information with four real-world datasets. AVAILABILITY AND IMPLEMENTATION The ComplexHeatmap package and documentation are freely available from the Bioconductor project: http://www.bioconductor.org/packages/devel/bioc/html/ComplexHeatmap.html CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Nature Communications | 2015
Tyler Alioto; Ivo Buchhalter; Sophia Derdak; Barbara Hutter; Matthew Eldridge; Eivind Hovig; Lawrence E. Heisler; Timothy Beck; Jared T. Simpson; Laurie Tonon; Anne Sophie Sertier; Ann Marie Patch; Natalie Jäger; Philip Ginsbach; Ruben M. Drews; Nagarajan Paramasivam; Rolf Kabbe; Sasithorn Chotewutmontri; Nicolle Diessl; Christopher Previti; Sabine Schmidt; Benedikt Brors; Lars Feuerbach; Michael Heinold; Susanne Gröbner; Andrey Korshunov; Patrick Tarpey; Adam Butler; Jonathan Hinton; David Jones
As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy.
Nature | 2017
Paul A. Northcott; Ivo Buchhalter; A. Sorana Morrissy; Volker Hovestadt; Joachim Weischenfeldt; Tobias Ehrenberger; Susanne Gröbner; Maia Segura-Wang; Thomas Zichner; Vasilisa A. Rudneva; Hans-Jörg Warnatz; Nikos Sidiropoulos; Aaron H. Phillips; Steven E. Schumacher; Kortine Kleinheinz; Sebastian M. Waszak; Serap Erkek; David Jones; Barbara C. Worst; Marcel Kool; Marc Zapatka; Natalie Jäger; Lukas Chavez; Barbara Hutter; Matthias Bieg; Nagarajan Paramasivam; Michael Heinold; Zuguang Gu; Naveed Ishaque; Christina Jäger-Schmidt
Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and ‘enhancer hijacking’ events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.
Blood | 2014
Itziar Salaverria; Idoia Martin-Guerrero; Rabea Wagener; Markus Kreuz; Christian W. Kohler; Julia Richter; Barbara Pienkowska-Grela; Patrick Adam; Birgit Burkhardt; Alexander Claviez; Christine Damm-Welk; Hans G. Drexler; Michael Hummel; Elaine S. Jaffe; Ralf Küppers; Christine Lefebvre; Jasmin Lisfeld; Markus Löffler; Roderick A. F. MacLeod; Inga Nagel; Ilske Oschlies; Maciej Rosolowski; Robert B. Russell; Grzegorz Rymkiewicz; Detlev Schindler; Matthias Schlesner; René Scholtysik; Carsten Schwaenen; Rainer Spang; Monika Szczepanowski
The genetic hallmark of Burkitt lymphoma (BL) is the t(8;14)(q24;q32) and its variants leading to activation of the MYC oncogene. It is a matter of debate whether true BL without MYC translocation exists. Here, we identified 59 lymphomas concordantly called BL by 2 gene expression classifiers among 753 B-cell lymphomas. Only 2 (3%) of these 59 molecular BL lacked a MYC translocation, which both shared a peculiar pattern of chromosome 11q aberration characterized by interstitial gains including 11q23.2-q23.3 and telomeric losses of 11q24.1-qter. We extended our analysis to 17 MYC-negative high-grade B-cell lymphomas with a similar 11q aberration and showed this aberration to be recurrently associated with morphologic and clinical features of BL. The minimal region of gain was defined by high-level amplifications in 11q23.3 and associated with overexpression of genes including PAFAH1B2 on a transcriptional and protein level. The recurrent region of loss contained a focal homozygous deletion in 11q24.2-q24.3 including the ETS1 gene, which was shown to be mutated in 4 of 16 investigated cases. These findings indicate the existence of a molecularly distinct subset of B-cell lymphomas reminiscent of BL, which is characterized by deregulation of genes in 11q.
Nature Medicine | 2016
Elisa M. Noll; Christian Eisen; Albrecht Stenzinger; Elisa Espinet; Alexander Muckenhuber; Corinna Klein; Vanessa Vogel; Bernd Klaus; Wiebke Nadler; Christoph Rösli; Christian Lutz; Michael Kulke; Jan Engelhardt; Franziska Zickgraf; Octavio Espinosa; Matthias Schlesner; Xiaoqi Jiang; Annette Kopp-Schneider; Peter Neuhaus; Marcus Bahra; Bruno V. Sinn; Roland Eils; Nathalia A. Giese; Thilo Hackert; Oliver Strobel; Jens Werner; Markus W. Büchler; Wilko Weichert; Andreas Trumpp; Martin R. Sprick
Although subtypes of pancreatic ductal adenocarcinoma (PDAC) have been described, this malignancy is clinically still treated as a single disease. Here we present patient-derived models representing the full spectrum of previously identified quasi-mesenchymal (QM-PDA), classical and exocrine-like PDAC subtypes, and identify two markers—HNF1A and KRT81—that enable stratification of tumors into different subtypes by using immunohistochemistry. Individuals with tumors of these subtypes showed substantial differences in overall survival, and their tumors differed in drug sensitivity, with the exocrine-like subtype being resistant to tyrosine kinase inhibitors and paclitaxel. Cytochrome P450 3A5 (CYP3A5) metabolizes these compounds in tumors of the exocrine-like subtype, and pharmacological or short hairpin RNA (shRNA)-mediated CYP3A5 inhibition sensitizes tumor cells to these drugs. Whereas hepatocyte nuclear factor 4, alpha (HNF4A) controls basal expression of CYP3A5, drug-induced CYP3A5 upregulation is mediated by the nuclear receptor NR1I2. CYP3A5 also contributes to acquired drug resistance in QM-PDA and classical PDAC, and it is highly expressed in several additional malignancies. These findings designate CYP3A5 as a predictor of therapy response and as a tumor cell–autonomous detoxification mechanism that must be overcome to prevent drug resistance.
Nature Genetics | 2015
Helene Kretzmer; Stephan H. Bernhart; Wei Wang; Andrea Haake; Marc A. Weniger; Anke K. Bergmann; Matthew J. Betts; Enrique Carrillo-de-Santa-Pau; Jana Gutwein; Julia Richter; Volker Hovestadt; Bingding Huang; Daniel Rico; Frank Jühling; Julia Kolarova; Qianhao Lu; Christian Otto; Rabea Wagener; Judith Arnolds; Birgit Burkhardt; Alexander Claviez; Hans G. Drexler; Sonja Eberth; Roland Eils; Paul Flicek; Siegfried Haas; Michael Hummel; Dennis Karsch; Hinrik H D Kerstens; Wolfram Klapper
Although Burkitt lymphomas and follicular lymphomas both have features of germinal center B cells, they are biologically and clinically quite distinct. Here we performed whole-genome bisulfite, genome and transcriptome sequencing in 13 IG-MYC translocation–positive Burkitt lymphoma, nine BCL2 translocation–positive follicular lymphoma and four normal germinal center B cell samples. Comparison of Burkitt and follicular lymphoma samples showed differential methylation of intragenic regions that strongly correlated with expression of associated genes, for example, genes active in germinal center dark-zone and light-zone B cells. Integrative pathway analyses of regions differentially methylated in Burkitt and follicular lymphomas implicated DNA methylation as cooperating with somatic mutation of sphingosine phosphate signaling, as well as the TCF3-ID3 and SWI/SNF complexes, in a large fraction of Burkitt lymphomas. Taken together, our results demonstrate a tight connection between somatic mutation, DNA methylation and transcriptional control in key B cell pathways deregulated differentially in Burkitt lymphoma and other germinal center B cell lymphomas.