Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Illi is active.

Publication


Featured researches published by Barbara Illi.


Nature Medicine | 2006

Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors

Giulia Minetti; Claudia Colussi; Raffaella Adami; C Serra; Chiara Mozzetta; Valeria Parente; S Fortuni; Stefania Straino; Maurilio Sampaolesi; M Di Padova; Barbara Illi; Paola Gallinari; C Steinkühler; Maurizio C. Capogrossi; Vittorio Sartorelli; Roberto Bottinelli; Carlo Gaetano; Pier Lorenzo Puri

Pharmacological interventions that increase myofiber size counter the functional decline of dystrophic muscles. We show that deacetylase inhibitors increase the size of myofibers in dystrophin-deficient (MDX) and α-sarcoglycan (α-SG)–deficient mice by inducing the expression of the myostatin antagonist follistatin in satellite cells. Deacetylase inhibitor treatment conferred on dystrophic muscles resistance to contraction-coupled degeneration and alleviated both morphological and functional consequences of the primary genetic defect. These results provide a rationale for using deacetylase inhibitors in the pharmacological therapy of muscular dystrophies.


Nature Genetics | 2010

Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes

Enza Maria Valente; Clare V. Logan; Soumaya Mougou-Zerelli; Jeong Ho Lee; Jennifer L. Silhavy; Francesco Brancati; Miriam Iannicelli; Lorena Travaglini; Sveva Romani; Barbara Illi; Matthew Adams; Katarzyna Szymanska; Annalisa Mazzotta; Ji Eun Lee; Jerlyn Tolentino; Dominika Swistun; Carmelo Salpietro; Carmelo Fede; Stacey Gabriel; Carsten Russ; Kristian Cibulskis; Carrie Sougnez; Friedhelm Hildebrandt; Edgar A. Otto; Susanne Held; Bill H. Diplas; Erica E. Davis; Mario Mikula; Charles M. Strom; Bruria Ben-Zeev

Joubert syndrome (JBTS), related disorders (JSRDs) and Meckel syndrome (MKS) are ciliopathies. We now report that MKS2 and CORS2 (JBTS2) loci are allelic and caused by mutations in TMEM216, which encodes an uncharacterized tetraspan transmembrane protein. Individuals with CORS2 frequently had nephronophthisis and polydactyly, and two affected individuals conformed to the oro-facio-digital type VI phenotype, whereas skeletal dysplasia was common in fetuses affected by MKS. A single G218T mutation (R73L in the protein) was identified in all cases of Ashkenazi Jewish descent (n = 10). TMEM216 localized to the base of primary cilia, and loss of TMEM216 in mutant fibroblasts or after knockdown caused defective ciliogenesis and centrosomal docking, with concomitant hyperactivation of RhoA and Dishevelled. TMEM216 formed a complex with Meckelin, which is encoded by a gene also mutated in JSRDs and MKS. Disruption of tmem216 expression in zebrafish caused gastrulation defects similar to those in other ciliary morphants. These data implicate a new family of proteins in the ciliopathies and further support allelism between ciliopathy disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2008

HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment

Claudia Colussi; Chiara Mozzetta; Aymone Gurtner; Barbara Illi; Jessica Rosati; Stefania Straino; Gianluca Ragone; Mario Pescatori; Germana Zaccagnini; Annalisa Antonini; Giulia Minetti; Fabio Martelli; Giulia Piaggio; Paola Gallinari; Christian Steinkulher; Emilio Clementi; Carmela Dell'Aversana; Lucia Altucci; Antonello Mai; Maurizio C. Capogrossi; Pier Lorenzo Puri; Carlo Gaetano

The overlapping histological and biochemical features underlying the beneficial effect of deacetylase inhibitors and NO donors in dystrophic muscles suggest an unanticipated molecular link among dystrophin, NO signaling, and the histone deacetylases (HDACs). Higher global deacetylase activity and selective increased expression of the class I histone deacetylase HDAC2 were detected in muscles of dystrophin-deficient MDX mice. In vitro and in vivo siRNA-mediated down-regulation of HDAC2 in dystrophic muscles was sufficient to replicate the morphological and functional benefits observed with deacetylase inhibitors and NO donors. We found that restoration of NO signaling in vivo, by adenoviral-mediated expression of a constitutively active endothelial NOS mutant in MDX muscles, and in vitro, by exposing MDX-derived satellite cells to NO donors, resulted in HDAC2 blockade by cysteine S-nitrosylation. These data reveal a special contribution of HDAC2 in the pathogenesis of Duchenne muscular dystrophy and indicate that HDAC2 inhibition by NO-dependent S-nitrosylation is important for the therapeutic response to NO donors in MDX mice. They also define a common target for independent pharmacological interventions in the treatment of Duchenne muscular dystrophy.


Circulation Research | 2005

Epigenetic Histone Modification and Cardiovascular Lineage Programming in Mouse Embryonic Stem Cells Exposed to Laminar Shear Stress

Barbara Illi; Simona Nanni; Antonella Farsetti; Liliana Morgante; Paolo Biglioli; Maurizio C. Capogrossi; Carlo Gaetano

Experimental evidence indicates that shear stress (SS) exerts a morphogenetic function during cardiac development of mouse and zebrafish embryos. However, the molecular basis for this effect is still elusive. Our previous work described that in adult endothelial cells, SS regulates gene expression by inducing epigenetic modification of histones and activation of transcription complexes bearing acetyltransferase activity. In this study, we evaluated whether SS treatment could epigenetically modify histones and influence cell differentiation in mouse embryonic stem (ES) cells. Cells were exposed to a laminar SS of 10 dyne per cm2/s−1, or kept in static conditions in the presence or absence of the histone deacetylase inhibitor trichostatin A (TSA). These experiments revealed that SS enhanced lysine acetylation of histone H3 at position 14 (K14), as well as serine phosphorylation at position 10 (S10) and lysine methylation at position 79 (K79), and cooperated with TSA, inducing acetylation of histone H4 and phosphoacetylation of S10 and K14 of histone H3. In addition, ES cells exposed to SS strongly activated transcription from the vascular endothelial growth factor (VEGF) receptor 2 promoter. This effect was paralleled by an early induction of cardiovascular markers, including smooth muscle actin, smooth muscle protein 22-&agr;, platelet-endothelial cell adhesion molecule-1, VEGF receptor 2, myocyte enhancer factor-2C (MEF2C), and &agr;-sarcomeric actin. In this condition, transcription factors MEF2C and Sma/MAD homolog protein 4 could be isolated from SS-treated ES cells complexed with the cAMP response element-binding protein acetyltransferase. These results provide molecular basis for the SS-dependent cardiovascular commitment of mouse ES cells and suggest that laminar flow may be successfully applied for the in vitro production of cardiovascular precursors.


Circulation Research | 2003

Shear Stress–Mediated Chromatin Remodeling Provides Molecular Basis for Flow-Dependent Regulation of Gene Expression

Barbara Illi; Simona Nanni; Antonella Farsetti; Paolo Biglioli; Maurizio C. Capogrossi; Carlo Gaetano

&NA; Shear stress (SS), the tangential component of hemodynamic forces, modulates the expression of several genes in endothelial cells. However, no information is available about its effect on chromatin structure, which plays a key role in gene transcription. In this study, a link between SS and chromatin remodeling was established in human umbilical vein endothelial cells (HUVECs). HUVECs were exposed to SS of 10 dyne/cm2 per second, in the presence or absence of the histone deacetylase inhibitor trichostatin A, and assayed for histone H3 and histone H4 modifications. SS induced histone H3 serine phosphorylation at position 10 (S10) and lysine acetylation at position 14 (K14) but required trichostatin A to induce H3 phosphoacetylation and H4 acetylation. The phosphatidylinositol 3‐kinase inhibitor wortmannin and the mitogen‐activated protein kinase inhibitor PD98059 decreased SS‐dependent histone H3 phosphorylation, without affecting its acetylation; the p38 inhibitor SB203580 reduced both H3 phosphorylation and acetylation, whereas the protein kinase A inhibitor PKI‐tide reduced histone H3 acetylation. Remarkably, the abrogation of histone acetylation inhibited SS‐dependent c‐fos expression. SS also activated ribosomal S6 kinase‐2 and mitogenand stress‐activated kinase‐1 protein kinases and promoted the formation of a cAMP‐responsive element‐binding protein (CREB)/CREB‐binding protein complex, providing the molecular basis for the increase in histone acetyltransferase activity observed in HUVECs exposed to SS. Finally, the effect of SS on chromatin remodeling was examined. In HUVECs exposed to SS, chromatin within c‐fos and c‐jun promoters was specifically immunoprecipitated by an antibody against acetylated histone H3 on K14. These results indicate that SS induces posttransduction modifications of histones; this is an early step toward the flow‐dependent regulation of gene expression. (Circ Res. 2003;93:155‐161.)


Journal of Clinical Investigation | 2009

Endothelial NOS, estrogen receptor β, and HIFs cooperate in the activation of a prognostic transcriptional pattern in aggressive human prostate cancer

Simona Nanni; Valentina Benvenuti; Annalisa Grasselli; Carmen Priolo; Aurora Aiello; Stefania Mattiussi; Claudia Colussi; Vittoria Lirangi; Barbara Illi; Manuela D’Eletto; Anna Maria Cianciulli; Michele Gallucci; Piero De Carli; Steno Sentinelli; Marcella Mottolese; Paolo Carlini; Lidia Strigari; Stephen Finn; Elke Mueller; Giorgio Arcangeli; Carlo Gaetano; Maurizio C. Capogrossi; Raffaele Perrone Donnorso; Silvia Bacchetti; Ada Sacchi; Alfredo Pontecorvi; Massimo Loda; Antonella Farsetti

The identification of biomarkers that distinguish between aggressive and indolent forms of prostate cancer (PCa) is crucial for diagnosis and treatment. In this study, we used cultured cells derived from prostate tissue from patients with PCa to define a molecular mechanism underlying the most aggressive form of PCa that involves the functional activation of eNOS and HIFs in association with estrogen receptor beta (ERbeta). Cells from patients with poor prognosis exhibited a constitutively hypoxic phenotype and increased NO production. Upon estrogen treatment, formation of ERbeta/eNOS, ERbeta/HIF-1alpha, or ERbeta/HIF-2alpha combinatorial complexes led to chromatin remodeling and transcriptional induction of prognostic genes. Tissue microarray analysis, using an independent cohort of patients, established a hierarchical predictive power for these proteins, with expression of eNOS plus ERbeta and nuclear eNOS plus HIF-2alpha being the most relevant indicators of adverse clinical outcome. Genetic or pharmacologic modulation of eNOS expression and activity resulted in reciprocal conversion of the transcriptional signature in cells from patients with bad or good outcome, respectively, highlighting the relevance of eNOS in PCa progression. Our work has considerable clinical relevance, since it may enable the earlier diagnosis of aggressive PCa through routine biopsy assessment of eNOS, ERbeta, and HIF-2alpha expression. Furthermore, proposing eNOS as a therapeutic target fosters innovative therapies for PCa with NO inhibitors, which are employed in preclinical trials in non-oncological diseases.


Circulation Research | 2008

Nitric Oxide Modulates Chromatin Folding in Human Endothelial Cells via Protein Phosphatase 2A Activation and Class II Histone Deacetylases Nuclear Shuttling

Barbara Illi; Claudio Dello Russo; Claudia Colussi; Jessica Rosati; Michele Pallaoro; Francesco Spallotta; Dante Rotili; Sergio Valente; Gianluca Ragone; Fabio Martelli; Paolo Biglioli; Christian Steinkühler; Paola Gallinari; Antonello Mai; Maurizio C. Capogrossi; Carlo Gaetano

Nitric oxide (NO) modulates important endothelial cell (EC) functions and gene expression by a molecular mechanism which is still poorly characterized. Here we show that in human umbilical vein ECs (HUVECs) NO inhibited serum-induced histone acetylation and enhanced histone deacetylase (HDAC) activity. By immunofluorescence and Western blot analyses it was found that NO induced class II HDAC4 and 5 nuclear shuttling and that class II HDACs selective inhibitor MC1568 rescued serum-dependent histone acetylation above control level in NO-treated HUVECs. In contrast, class I HDACs inhibitor MS27–275 had no effect, indicating a specific role for class II HDACs in NO-dependent histone deacetylation. In addition, it was found that NO ability to induce HDAC4 and HDAC5 nuclear shuttling involved the activation of the protein phosphatase 2A (PP2A). In fact, HDAC4 nuclear translocation was impaired in ECs expressing small-t antigen and exposed to NO. Finally, in cells engineered to express a HDAC4-Flag fusion protein, NO induced the formation of a macromolecular complex including HDAC4, HDAC3, HDAC5, and an active PP2A. The present results show that NO-dependent PP2A activation plays a key role in class II HDACs nuclear translocation.


Pharmacology & Therapeutics | 2009

NO sparks off chromatin: Tales of a multifaceted epigenetic regulator

Barbara Illi; Claudia Colussi; Annalisa Grasselli; Antonella Farsetti; Maurizio C. Capogrossi; Carlo Gaetano

The discovery of nitric oxide (NO) revealed its ambiguous nature, which is related to its pleiotropic activities that control the homeostasis of every organism from bacteria to mammals in several physiological and pathological situations. The wide range of action of NO basically depends on two features: 1) the variety of chemical reactions depending on NO, and 2) the differential cellular responses elicited by distinct NO concentrations. Despite the increasing body of knowledge regarding its chemistry, biology and NO-dependent signaling pathways, little information is available on the nuclear actions of NO in terms of gene expression regulation. Indeed, studies of a putative role for this diatomic compound in regulating chromatin remodeling are still in their infancy. Only recently has the role of NO in epigenetics emerged, and some of its putative epigenetic properties are still only hypothetical. In the present review, we discuss the current evidence for NO-related mechanisms of epigenetic gene expression regulation. We link some of the well known NO chemical reactions and metabolic processes (e.g., S-nitrosylation of thiols, tyrosine nitration, cGMP production) to chromatin modification and address the most recent, striking hypothesis about NO and the control of chromosomes structure.


Gene Therapy | 2000

Transcriptionally active drugs improve adenovirus vector performance in vitro and in vivo

C Gaetano; A Catalano; R Palumbo; Barbara Illi; G Orlando; G Ventoruzzo; F Serino; Maurizio C. Capogrossi

Cytomegalovirus (CMV) promoter is often present in recombinant adenovirus vectors (AdVs) suitable for gene therapy, ensuring high levels of transgene production in a wide range of hosts. Despite this characteristic, the presence of the AdV genome in target cells and tissues typically lasts longer than transgene production that may be rapidly extincted by ill-defined silencing mechanisms. In the present article, it is reported that transcriptionally active drugs, retinoic acid (RA) and histone deacetylase inhibitor trichostatin A (TSA), enhance AdV transgene expression in infected cells and tissues. The association of RA and TSA increased more than seven-fold above control the activity of AdVs encoding for LacZ or VEGF165. This effect was, at least in part, mediated by the direct activation of retinoic acid receptors. Finally, administration of RA and TSA alone at days 0 and 5 after infection prolonged transgene production up to 21 days after infection versus 6–8 days in untreated controls. These results indicate that transcriptionally active drugs improve AdV function and may represent a novel strategy to more efficiently design AdVs for gene therapy interventions.


Stem Cells | 2010

Nitric oxide determines mesodermic differentiation of mouse embryonic stem cells by activating class IIa histone deacetylases: potential therapeutic implications in a mouse model of hindlimb ischemia.

Francesco Spallotta; Jessica Rosati; Stefania Straino; Simona Nanni; Annalisa Grasselli; Valeria Ambrosino; Dante Rotili; Sergio Valente; Antonella Farsetti; Antonello Mai; Maurizio C. Capogrossi; Carlo Gaetano; Barbara Illi

In human endothelial cells, nitric oxide (NO) results in class IIa histone deacetylases (HDACs) activation and marked histone deacetylation. It is unknown whether similar epigenetic events occur in embryonic stem cells (ESC) exposed to NO and how this treatment could influence ESC therapeutic potential during tissue regeneration.

Collaboration


Dive into the Barbara Illi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlo Gaetano

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Jessica Rosati

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar

Claudia Colussi

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simona Nanni

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonello Mai

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge