Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Jane Dillon is active.

Publication


Featured researches published by Barbara Jane Dillon.


Infection and Immunity | 2008

A Replication-Limited Recombinant Mycobacterium bovis BCG Vaccine against Tuberculosis Designed for Human Immunodeficiency Virus-Positive Persons Is Safer and More Efficacious than BCG

Michael V. Tullius; Günter Harth; Saša Masleša-Galić; Barbara Jane Dillon; Marcus A. Horwitz

ABSTRACT Tuberculosis is the leading cause of death in AIDS patients, yet the current tuberculosis vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), is contraindicated for immunocompromised individuals, including human immunodeficiency virus-positive persons, because it can cause disseminated disease; moreover, its efficacy is suboptimal. To address these problems, we have engineered BCG mutants that grow normally in vitro in the presence of a supplement, are preloadable with supplement to allow limited growth in vivo, and express the highly immunoprotective Mycobacterium tuberculosis 30-kDa major secretory protein. The limited replication in vivo renders these vaccines safer than BCG in SCID mice yet is sufficient to induce potent cell-mediated and protective immunity in the outbred guinea pig model of pulmonary tuberculosis. In the case of one vaccine, rBCG(mbtB)30, protection was superior to that with BCG (0.3-log fewer CFU of M. tuberculosis in the lung [P < 0.04] and 0.6-log fewer CFU in the spleen [P = 0.001] in aerosol-challenged animals [means for three experiments]); hence, rBCG(mbtB)30 is the first live mycobacterial vaccine that is both more attenuated than BCG in the SCID mouse and more potent than BCG in the guinea pig. Our study demonstrates the feasibility of developing safer and more potent vaccines against tuberculosis. The novel approach of engineering a replication-limited vaccine expressing a recombinant immunoprotective antigen and preloading it with a required nutrient, such as iron, that is capable of being stored should be generally applicable to other live vaccine vectors targeting intracellular pathogens.


Infection and Immunity | 2005

Enhancing the protective efficacy of Mycobacterium bovis BCG vaccination against tuberculosis by boosting with the Mycobacterium tuberculosis major secretory protein.

Marcus A. Horwitz; Guenter Harth; Barbara Jane Dillon; Saša Masleša-Galić

ABSTRACT Tuberculosis continues to ravage humanity, killing 2 million people yearly. Most cases occur in areas of the world to which the disease is endemic, where almost everyone is vaccinated early in life with Mycobacterium bovis BCG, the currently available vaccine against tuberculosis. Thus, while more-potent vaccines are needed to replace BCG, new vaccines are also needed to boost the immune protection of the 4 billion people already vaccinated with BCG. Until now, no booster vaccine has been shown capable of significantly enhancing the level of protective immunity induced by BCG in the stringent guinea pig model of pulmonary tuberculosis, the “gold standard” for testing tuberculosis vaccines. In this paper, we describe a booster vaccine for BCG comprising the purified recombinant Mycobacterium tuberculosis 30-kDa protein, the major secreted protein of this pathogen. In the guinea pig model of pulmonary tuberculosis, boosting BCG-immunized animals once with the 30-kDa protein greatly increased cell-mediated and humoral immune responses to the protein in three consecutive experiments. Most importantly, boosting BCG-immunized animals once with the 30-kDa protein significantly enhanced protective immunity against aerosol challenge with highly virulent M. tuberculosis, as evidenced by a significantly reduced lung and spleen burden of M. tuberculosis compared with those for nonboosted BCG-immunized animals (mean additional reduction in CFU of 0.4 ± 0.1 log in the lung [P = 0.03] and 0.6 ± 0.1 log in the spleen [P = 0.002]). This study suggests that administering BCG-immunized people a booster vaccine comprising the 30-kDa protein may enhance their level of immunoprotection against tuberculosis.


ACS Nano | 2015

Mesoporous Silica Nanoparticles with pH-Sensitive Nanovalves for Delivery of Moxifloxacin Provide Improved Treatment of Lethal Pneumonic Tularemia

Zilu Li; Daniel L. Clemens; Bai-Yu Lee; Barbara Jane Dillon; Marcus A. Horwitz; Jeffrey I. Zink

We have optimized mesoporous silica nanoparticles (MSNs) functionalized with pH-sensitive nanovalves for the delivery of the broad spectrum fluoroquinolone moxifloxacin (MXF) and demonstrated its efficacy in treating Francisella tularensis infections both in vitro and in vivo. We compared two different nanovalve systems, positive and negative charge modifications of the mesopores, and different loading conditions-varying pH, cargo concentration, and duration of loading-and identified conditions that maximize both the uptake and release capacity of MXF by MSNs. We have demonstrated in macrophage cell culture that the MSN-MXF delivery platform is highly effective in killing F. tularensis in infected macrophages, and in a mouse model of lethal pneumonic tularemia, we have shown that the drug-loaded MSNs are much more effective in killing F. tularensis than an equivalent amount of free MXF.


Infection and Immunity | 2010

A Francisella tularensis Live Vaccine Strain (LVS) Mutant with a Deletion in capB, Encoding a Putative Capsular Biosynthesis Protein, Is Significantly More Attenuated than LVS yet Induces Potent Protective Immunity in Mice against F. tularensis Challenge

Qingmei Jia; Bai-Yu Lee; Richard A. Bowen; Barbara Jane Dillon; Susan M. Som; Marcus A. Horwitz

ABSTRACT Francisella tularensis, the causative agent of tularemia, is in the top category (category A) of potential agents of bioterrorism. The F. tularensis live vaccine strain (LVS) is the only vaccine currently available to protect against tularemia; however, this unlicensed vaccine is relatively toxic and provides incomplete protection against aerosolized F. tularensis, the most dangerous mode of transmission. Hence, a safer and more potent vaccine is needed. As a first step toward addressing this need, we have constructed and characterized an attenuated version of LVS, LVS ΔcapB, both as a safer vaccine and as a vector for the expression of recombinant F. tularensis proteins. LVS ΔcapB, with a targeted deletion in a putative capsule synthesis gene (capB), is antibiotic resistance marker free. LVS ΔcapB retains the immunoprotective O antigen, is serum resistant, and is outgrown by parental LVS in human macrophage-like THP-1 cells in a competition assay. LVS ΔcapB is significantly attenuated in mice; the 50% lethal dose (LD50) intranasally (i.n.) is >10,000-fold that of LVS. Providing CapB in trans to LVS ΔcapB partially restores its virulence in mice. Mice immunized with LVS ΔcapB i.n. or intradermally (i.d.) developed humoral and cellular immune responses comparable to those of mice immunized with LVS, and when challenged 4 or 8 weeks later with a lethal dose of LVS i.n., they were 100% protected from illness and death and had significantly lower levels (3 to 5 logs) of LVS in the lung, liver, and spleen than sham-immunized mice. Most importantly, mice immunized with LVS ΔcapB i.n. or i.d. and then challenged 6 weeks later by aerosol with 10× the LD50 of the highly virulent type A F. tularensis strain SchuS4 were significantly protected (100% survival after i.n. immunization). These results show that LVS ΔcapB is significantly safer than LVS and yet provides potent protective immunity against virulent F. tularensis SchuS4 challenge.


Vaccine | 2009

Commonly administered BCG strains including an evolutionarily early strain and evolutionarily late strains of disparate genealogy induce comparable protective immunity against tuberculosis.

Marcus A. Horwitz; Günter Harth; Barbara Jane Dillon; Saša Masleša-Galić

BCG has been administered to over 4 billion persons worldwide, but its efficacy in preventing tuberculosis in adults has been highly variable. One hypothesis for its variability is that different strains of BCG vary in protective efficacy, and moreover, that evolutionarily early strains are more efficacious than the more attenuated evolutionarily late strains, which lack region of deletion 2. To examine this hypothesis, we tested six widely used BCG strains--the evolutionarily early strain BCG Japanese, two evolutionarily late strains in DU2 Group III (BCG Danish and Glaxo), and three evolutionarily late strains in DU2 Group IV (BCG Connaught, Pasteur, and Tice)--in the guinea pig model of pulmonary tuberculosis. With the exception of BCG Glaxo, which had relatively poor efficacy, we found no substantial differences in efficacy between the early strain and the late strains, and only small differences in efficacy among late strains. BCG Tice was the most efficacious BCG vaccine, with significantly fewer Mycobacterium tuberculosis in the lung and spleen than BCG Danish and BCG Japanese, although absolute differences in the organ burden of M. tuberculosis among these three vaccines were small (< or =0.2 log). BCG Tice and Pasteur were not significantly different. rBCG30, a recombinant BCG Tice vaccine overexpressing the M. tuberculosis 30 kDa major secretory protein (Antigen 85B), was more potent than any BCG vaccine (P < 0.0001 for differences in organ burden). Our study shows that late strains are not less potent than an early strain and argues against strain differences as a major factor in the variability of outcomes in BCG vaccine trials.


PLOS Pathogens | 2016

Type I and Type II Interferon Coordinately Regulate Suppressive Dendritic Cell Fate and Function during Viral Persistence

Cameron R. Cunningham; Ameya Champhekar; Michael V. Tullius; Barbara Jane Dillon; Anjie Zhen; Justin Rafael de la Fuente; Jonathan Herskovitz; Heidi Elsaesser; Laura M. Snell; Elizabeth B. Wilson; Juan Carlos de la Torre; Scott G. Kitchen; Marcus A. Horwitz; Steven J. Bensinger; Stephen T. Smale; David G. Brooks

Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections.


Infection and Immunity | 2013

A Heterologous Prime-Boost Vaccination Strategy Comprising the Francisella tularensis Live Vaccine Strain capB Mutant and Recombinant Attenuated Listeria monocytogenes Expressing F. tularensis IglC Induces Potent Protective Immunity in Mice against Virulent F. tularensis Aerosol Challenge

Qingmei Jia; Richard A. Bowen; Jacob Sahakian; Barbara Jane Dillon; Marcus A. Horwitz

ABSTRACT Francisella tularensis, the causative agent of tularemia, is a category A bioterrorism agent. A vaccine that is safer and more effective than the currently available unlicensed F. tularensis live vaccine strain (LVS) is needed to protect against intentional release of aerosolized F. tularensis, the most dangerous type of exposure. In this study, we employed a heterologous prime-boost vaccination strategy comprising intradermally administered LVS ΔcapB (highly attenuated capB-deficient LVS mutant) as the primer vaccine and rLm/iglC (recombinant attenuated Listeria monocytogenes expressing the F. tularensis immunoprotective antigen IglC) as the booster vaccine. Boosting LVS ΔcapB-primed mice with rLm/iglC significantly enhanced T cell immunity; their splenic T cells secreted significantly more gamma interferon (IFN-γ) and had significantly more cytokine (IFN-γ and/or tumor necrosis factor [TNF] and/or interleukin-2 [IL-2])-producing CD4+ and CD8+ T cells upon in vitro IglC stimulation. Importantly, mice primed with LVS ΔcapB or rLVS ΔcapB/IglC, boosted with rLm/iglC, and subsequently challenged with 10 50% lethal doses (LD50) of aerosolized highly virulent F. tularensis Schu S4 had a significantly higher survival rate and mean survival time than mice immunized with only LVS ΔcapB (P < 0.0001); moreover, compared with mice immunized once with LVS, primed-boosted mice had a higher survival rate (75% versus 62.5%) and mean survival time during the first 21 days postchallenge (19 and 20 days for mice boosted after being primed with LVS ΔcapB and rLVS ΔcapB/IglC, respectively, versus 17 days for mice immunized with LVS) and maintained their weight significantly better (P < 0.01). Thus, the LVS ΔcapB-rLm/iglC prime-boost vaccination strategy holds substantial promise for a vaccine that is safer and at least as potent as LVS.


Small | 2016

Redox-Triggered Release of Moxifloxacin from Mesoporous Silica Nanoparticles Functionalized with Disulfide Snap-Tops Enhances Efficacy Against Pneumonic Tularemia in Mice.

Bai-Yu Lee; Zilu Li; Daniel L. Clemens; Barbara Jane Dillon; Angela A. Hwang; Jeffrey I. Zink; Marcus A. Horwitz

Effective and rapid treatment of tularemia is needed to reduce morbidity and mortality of this potentially fatal infectious disease. The etiologic agent, Francisella tularensis, is a facultative intracellular bacterial pathogen which infects and multiplies to high numbers in macrophages. Nanotherapeutics are particularly promising for treatment of infectious diseases caused by intracellular pathogens, whose primary host cells are macrophages, because nanoparticles preferentially target and are avidly internalized by macrophages. A mesoporous silica nanoparticle (MSN) has been developed functionalized with disulfide snap-tops that has high drug loading and selectively releases drug intracellularly in response to the redox potential. These nanoparticles, when loaded with Hoechst fluorescent dye, release their cargo exclusively intracellularly and stain the nuclei of macrophages. The MSNs loaded with moxifloxacin kill F. tularensis in macrophages in a dose-dependent fashion. In a mouse model of lethal pneumonic tularemia, MSNs loaded with moxifloxacin prevent weight loss, illness, and death, markedly reduce the burden of F. tularensis in the lung, liver, and spleen, and are significantly more efficacious than an equivalent amount of free drug. An important proof-of-principle for the potential therapeutic use of a novel nanoparticle drug delivery platform for the treatment of infectious diseases is provided.


Small | 2015

pH-Responsive Isoniazid-Loaded Nanoparticles Markedly Improve Tuberculosis Treatment in Mice

Angela A. Hwang; Bai-Yu Lee; Daniel L. Clemens; Barbara Jane Dillon; Jeffrey I. Zink; Marcus A. Horwitz

Tuberculosis is a major global health problem for which improved therapeutics are needed to shorten the course of treatment and combat emergence of drug resistance. Mycobacterium tuberculosis, the etiologic agent of tuberculosis, is an intracellular pathogen of mononuclear phagocytes. As such, it is an ideal pathogen for nanotherapeutics because macrophages avidly ingest nanoparticles even without specific targeting molecules. Hence, a nanoparticle drug delivery system has the potential to target and deliver high concentrations of drug directly into M. tuberculosis-infected cells-greatly enhancing efficacy while avoiding off-target toxicities. Stimulus-responsive mesoporous silica nanoparticles of two different sizes, 100 and 50 nm, are developed as carriers for the major anti-tuberculosis drug isoniazid in a prodrug configuration. The drug is captured by the aldehyde-functionalized nanoparticle via hydrazone bond formation and coated with poly(ethylene imine)-poly(ethylene glycol) (PEI-PEG). The drug is released from the nanoparticles in response to acidic pH at levels that naturally occur within acidified endolysosomes. It is demonstrated that isoniazid-loaded PEI-PEG-coated nanoparticles are avidly ingested by M. tuberculosis-infected human macrophages and kill the intracellular bacteria in a dose-dependent manner. It is further demonstrated in a mouse model of pulmonary tuberculosis that the nanoparticles are well tolerated and much more efficacious than an equivalent amount of free drug.


Blood | 2017

Endogenous hepcidin and its agonist mediate resistance to selected infections by clearing non-transferrin-bound iron

Deborah Stefanova; Antoan Raychev; João Arezes; Piotr Ruchala; Victoria Gabayan; Mikael Skurnik; Barbara Jane Dillon; Marcus A. Horwitz; Tomas Ganz; Yonca Bulut; Elizabeta Nemeth

The iron-regulatory hormone hepcidin is induced early in infection, causing iron sequestration in macrophages and decreased plasma iron; this is proposed to limit the replication of extracellular microbes, but could also promote infection with macrophage-tropic pathogens. The mechanisms by which hepcidin and hypoferremia modulate host defense, and the spectrum of microbes affected, are poorly understood. Using mouse models, we show that hepcidin was selectively protective against siderophilic extracellular pathogens (Yersinia enterocolitica O9) by controlling non-transferrin-bound iron (NTBI) rather than iron-transferrin concentration. NTBI promoted the rapid growth of siderophilic but not nonsiderophilic bacteria in mice with either genetic or iatrogenic iron overload and in human plasma. Hepcidin or iron loading did not affect other key components of innate immunity, did not indiscriminately promote intracellular infections (Mycobacterium tuberculosis), and had no effect on extracellular nonsiderophilic Y enterocolitica O8 or Staphylococcus aureus Hepcidin analogs may be useful for treatment of siderophilic infections.

Collaboration


Dive into the Barbara Jane Dillon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bai-Yu Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Günter Harth

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qingmei Jia

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zilu Li

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge