Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saša Masleša-Galić is active.

Publication


Featured researches published by Saša Masleša-Galić.


Molecular Microbiology | 2005

All four Mycobacterium tuberculosis glnA genes encode glutamine synthetase activities but only GlnA1 is abundantly expressed and essential for bacterial homeostasis

Günter Harth; Saša Masleša-Galić; Michael V. Tullius; Marcus A. Horwitz

Glutamine synthetases (GS) are ubiquitous enzymes that play a central role in every cells nitrogen metabolism. We have investigated the expression and activity of all four genomic Mycobacterium tuberculosis GS – GlnA1, GlnA2, GlnA3 and GlnA4 – and four enzymes regulating GS activity and/or nitrogen and glutamate metabolism – adenylyl transferase (GlnE), γ‐glutamylcysteine synthase (GshA), UDP‐N‐acetylmuramoylalanine‐d‐glutamate ligase (MurD) and glutamate racemase (MurI). All eight genes are located in multigene operons except for glnA1, and all are transcribed in M. tuberculosis; however, some are not translated or translated at such low levels that the enzymes escape detection. Of the four GS, only GlnA1 can be detected. Each of the eight genes, as well as the glnA1–glnE–glnA2 cluster, was expressed separately in Mycobacterium smegmatis, and its gene product was characterized and assayed for enzymatic activity by analysing the reaction products. In M. smegmatis, all four recombinant‐overexpressed GS are multimeric enzymes exhibiting GS activity. Whereas GlnA1, GlnA3 and GlnA4 catalyse the synthesis of l‐glutamine, GlnA2 catalyses the synthesis of d‐glutamine and d‐isoglutamine. The generation of mutants in M. tuberculosis of the four glnA genes, murD and murI demonstrated that all of these genes except glnA1 are nonessential for in vitro growth. l‐methionine‐S,R‐sulphoximine (MSO), previously demonstrated to inhibit M. tuberculosis growth in vitro and in vivo, strongly inhibited all four GS enzymes; hence, the design of MSO analogues with an improved therapeutic to toxic ratio remains a promising strategy for the development of novel anti‐M. tuberculosis drugs.


Infection and Immunity | 2008

A Replication-Limited Recombinant Mycobacterium bovis BCG Vaccine against Tuberculosis Designed for Human Immunodeficiency Virus-Positive Persons Is Safer and More Efficacious than BCG

Michael V. Tullius; Günter Harth; Saša Masleša-Galić; Barbara Jane Dillon; Marcus A. Horwitz

ABSTRACT Tuberculosis is the leading cause of death in AIDS patients, yet the current tuberculosis vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), is contraindicated for immunocompromised individuals, including human immunodeficiency virus-positive persons, because it can cause disseminated disease; moreover, its efficacy is suboptimal. To address these problems, we have engineered BCG mutants that grow normally in vitro in the presence of a supplement, are preloadable with supplement to allow limited growth in vivo, and express the highly immunoprotective Mycobacterium tuberculosis 30-kDa major secretory protein. The limited replication in vivo renders these vaccines safer than BCG in SCID mice yet is sufficient to induce potent cell-mediated and protective immunity in the outbred guinea pig model of pulmonary tuberculosis. In the case of one vaccine, rBCG(mbtB)30, protection was superior to that with BCG (0.3-log fewer CFU of M. tuberculosis in the lung [P < 0.04] and 0.6-log fewer CFU in the spleen [P = 0.001] in aerosol-challenged animals [means for three experiments]); hence, rBCG(mbtB)30 is the first live mycobacterial vaccine that is both more attenuated than BCG in the SCID mouse and more potent than BCG in the guinea pig. Our study demonstrates the feasibility of developing safer and more potent vaccines against tuberculosis. The novel approach of engineering a replication-limited vaccine expressing a recombinant immunoprotective antigen and preloading it with a required nutrient, such as iron, that is capable of being stored should be generally applicable to other live vaccine vectors targeting intracellular pathogens.


Infection and Immunity | 2005

Enhancing the protective efficacy of Mycobacterium bovis BCG vaccination against tuberculosis by boosting with the Mycobacterium tuberculosis major secretory protein.

Marcus A. Horwitz; Guenter Harth; Barbara Jane Dillon; Saša Masleša-Galić

ABSTRACT Tuberculosis continues to ravage humanity, killing 2 million people yearly. Most cases occur in areas of the world to which the disease is endemic, where almost everyone is vaccinated early in life with Mycobacterium bovis BCG, the currently available vaccine against tuberculosis. Thus, while more-potent vaccines are needed to replace BCG, new vaccines are also needed to boost the immune protection of the 4 billion people already vaccinated with BCG. Until now, no booster vaccine has been shown capable of significantly enhancing the level of protective immunity induced by BCG in the stringent guinea pig model of pulmonary tuberculosis, the “gold standard” for testing tuberculosis vaccines. In this paper, we describe a booster vaccine for BCG comprising the purified recombinant Mycobacterium tuberculosis 30-kDa protein, the major secreted protein of this pathogen. In the guinea pig model of pulmonary tuberculosis, boosting BCG-immunized animals once with the 30-kDa protein greatly increased cell-mediated and humoral immune responses to the protein in three consecutive experiments. Most importantly, boosting BCG-immunized animals once with the 30-kDa protein significantly enhanced protective immunity against aerosol challenge with highly virulent M. tuberculosis, as evidenced by a significantly reduced lung and spleen burden of M. tuberculosis compared with those for nonboosted BCG-immunized animals (mean additional reduction in CFU of 0.4 ± 0.1 log in the lung [P = 0.03] and 0.6 ± 0.1 log in the spleen [P = 0.002]). This study suggests that administering BCG-immunized people a booster vaccine comprising the 30-kDa protein may enhance their level of immunoprotection against tuberculosis.


Molecular Microbiology | 1994

Decay of the IS 10 antisense RNA by 3′ exoribonucleases: evidence that RNase II stabilizes RNA‐OUT against PNPase attack

Cynthia M. Pepe; Saša Masleša-Galić; Robert W. Simons

RNA‐OUT, the 69‐nucleotide antisense RNA that regulates Tn 10/IS 10 transposition folds into a simple stem‐loop structure. The unusually high metabolic stability of RNA‐OUT is dependent, in part, on the integrity of its stem‐domain: mutations that disrupt stem‐domain structure (Class II mutations) render RNA‐OUT unstable, and restoration of structure restores stability. Indeed, there is a strong correlation between the thermodynamic and metabolic stabilities of RNA‐OUT. We show here that stem‐domain integrity determines RNA‐OUTs resistance to 3’exoribonucleolytic attack: Class II mutations are almost completely suppressed in Escherichia coli cells lacking its principal 3′ exoribonucleases, ribonuclease II (RNase II) and polynucleotide phosphorylase (PNPase). RNase II and PNPase are individually able to degrade various RNA‐OUT species, albeit with different efficiencies: RNA‐OUT secondary structure provides greater resistance to RNase II than to PNPase. Surprisingly, RNA‐OUT is threefold more stable in wild‐type cells than in cells deficient for RNase II activity, suggesting that RNase II somehow lessens RNPase attack on RNA‐OUT. We discuss how this might occur. We also show that wild‐type RNA‐OUT stability changes only twofold across the normal range of physiological growth temperatures (30–44°C) in wild‐type cells, which has important implications for IS 10 biology.


Vaccine | 2009

Commonly administered BCG strains including an evolutionarily early strain and evolutionarily late strains of disparate genealogy induce comparable protective immunity against tuberculosis.

Marcus A. Horwitz; Günter Harth; Barbara Jane Dillon; Saša Masleša-Galić

BCG has been administered to over 4 billion persons worldwide, but its efficacy in preventing tuberculosis in adults has been highly variable. One hypothesis for its variability is that different strains of BCG vary in protective efficacy, and moreover, that evolutionarily early strains are more efficacious than the more attenuated evolutionarily late strains, which lack region of deletion 2. To examine this hypothesis, we tested six widely used BCG strains--the evolutionarily early strain BCG Japanese, two evolutionarily late strains in DU2 Group III (BCG Danish and Glaxo), and three evolutionarily late strains in DU2 Group IV (BCG Connaught, Pasteur, and Tice)--in the guinea pig model of pulmonary tuberculosis. With the exception of BCG Glaxo, which had relatively poor efficacy, we found no substantial differences in efficacy between the early strain and the late strains, and only small differences in efficacy among late strains. BCG Tice was the most efficacious BCG vaccine, with significantly fewer Mycobacterium tuberculosis in the lung and spleen than BCG Danish and BCG Japanese, although absolute differences in the organ burden of M. tuberculosis among these three vaccines were small (< or =0.2 log). BCG Tice and Pasteur were not significantly different. rBCG30, a recombinant BCG Tice vaccine overexpressing the M. tuberculosis 30 kDa major secretory protein (Antigen 85B), was more potent than any BCG vaccine (P < 0.0001 for differences in organ burden). Our study shows that late strains are not less potent than an early strain and argues against strain differences as a major factor in the variability of outcomes in BCG vaccine trials.


Nature Communications | 2017

Drug regimens identified and optimized by output-driven platform markedly reduce tuberculosis treatment time

Bai-Yu Lee; Daniel L. Clemens; Aleidy Silva; Barbara Jane Dillon; Saša Masleša-Galić; Susana Nava; Xianting Ding; Chih-Ming Ho; Marcus A. Horwitz

The current drug regimens for treating tuberculosis are lengthy and onerous, and hence complicated by poor adherence leading to drug resistance and disease relapse. Previously, using an output-driven optimization platform and an in vitro macrophage model of Mycobacterium tuberculosis infection, we identified several experimental drug regimens among billions of possible drug-dose combinations that outperform the current standard regimen. Here we use this platform to optimize the in vivo drug doses of two of these regimens in a mouse model of pulmonary tuberculosis. The experimental regimens kill M. tuberculosis much more rapidly than the standard regimen and reduce treatment time to relapse-free cure by 75%. Thus, these regimens have the potential to provide a markedly shorter course of treatment for tuberculosis in humans. As these regimens omit isoniazid, rifampicin, fluoroquinolones and injectable aminoglycosides, they would be suitable for treating many cases of multidrug and extensively drug-resistant tuberculosis.


Infection and Immunity | 2017

Listeria-Vectored Vaccine Expressing the Mycobacterium tuberculosis 30-Kilodalton Major Secretory Protein via the Constitutively Active prfA* Regulon Boosts Mycobacterium bovis BCG Efficacy against Tuberculosis

Qingmei Jia; Barbara Jane Dillon; Saša Masleša-Galić; Marcus A. Horwitz

ABSTRACT A potent vaccine against tuberculosis, one of the worlds deadliest diseases, is needed to enhance the immunity of people worldwide, most of whom have been vaccinated with the partially effective Mycobacterium bovis BCG vaccine. Here we investigate novel live attenuated recombinant Listeria monocytogenes (rLm) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein (r30/antigen 85B [Ag85B]) (rLm30) as heterologous booster vaccines in animals primed with BCG. Using three attenuated L. monocytogenes vectors, L. monocytogenes ΔactA (LmI), L. monocytogenes ΔactA ΔinlB (LmII), and L. monocytogenes ΔactA ΔinlB prfA* (LmIII), we constructed five rLm30 vaccine candidates expressing r30 linked in frame to the L. monocytogenes listeriolysin O signal sequence and driven by the hly promoter (h30) or linked in frame to the ActA N-terminal 100 amino acids and driven by the actA promoter (a30). All five rLm30 vaccines secreted r30 in broth and macrophages; while rLm30 expressing r30 via a constitutively active prfA* regulon (rLmIII/a30) expressed the largest amount of r30 in broth culture, all five rLm30 vaccines expressed equivalent amounts of r30 in infected macrophages. In comparative studies, boosting of BCG-immunized mice with rLmIII/a30 induced the strongest antigen-specific T-cell responses, including splenic and lung polyfunctional CD4+ T cells expressing the three cytokines interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-2 (IL-2) (P < 0.001) and splenic and lung CD8+ T cells expressing IFN-γ (P < 0.0001). In mice and guinea pigs, the rLmIII/a30 and rLmI/h30 vaccines were generally more potent booster vaccines than r30 with an adjuvant and a recombinant adenovirus vaccine expressing r30. In a setting in which BCG alone was highly immunoprotective, boosting of mice with rLmIII/a30, the most potent of the vaccines, significantly enhanced protection against aerosolized M. tuberculosis (P < 0.01).


Vaccine | 2016

Francisella tularensis Live Vaccine Strain deficient in capB and overexpressing the fusion protein of IglA, IglB, and IglC from the bfr promoter induces improved protection against F. tularensis respiratory challenge.

Qingmei Jia; Richard A. Bowen; Bai-Yu Lee; Barbara Jane Dillon; Saša Masleša-Galić; Marcus A. Horwitz

A safer and more effective vaccine than the unlicensed Francisella tularensis Live Vaccine Strain (LVS) is needed to protect against the biowarfare agent F. tularensis. Previously, we developed an LVS ΔcapB mutant that is significantly safer than LVS and provides potent protective immunity against F. tularensis respiratory challenge when administered intranasally but limited protection when administered intradermally unless as part of a prime-boost vaccination strategy. To improve the immunogenicity and efficacy of LVS ΔcapB, we developed recombinant LVS ΔcapB (rLVS ΔcapB) strains overexpressing various F. tularensis Francisella Pathogenicity Island (FPI) proteins - IglA, IglB and IglC, and a fusion protein (IglABC) comprising immunodominant epitopes of IglA, IglB, and IglC downstream of different Francisella promoters, including the bacterioferritin (bfr) promoter. We show that rLVS ΔcapB/bfr-iglA, iglB, iglC, and iglABC express more IglA, IglB, IglC or IglABC than parental LVS ΔcapB in broth and in human macrophages, and stably express FPI proteins in macrophages and mice absent antibiotic selection. In response to IglC and heat-inactivated LVS, spleen cells from mice immunized intradermally with rLVS ΔcapB/bfr-iglC or bfr-iglABC secrete greater amounts of interferon-gamma and/or interleukin-17 than those from mice immunized with LVS ΔcapB, comparable to those from LVS-immunized mice. Mice immunized with rLVS ΔcapB/bfr-iglA, iglB, iglC or iglABC produce serum antibodies at levels similar to LVS-immunized mice. Mice immunized intradermally with rLVS ΔcapB/bfr-iglABC and challenged intranasally with virulent F. tularensis Schu S4 survive longer than sham- and LVS ΔcapB-immunized mice. Mice immunized intranasally with rLVS ΔcapB/bfr-iglABC - but not with LVS - just before or after respiratory challenge with F. tularensis Schu S4 are partially protected; protection is correlated with induction of a strong innate immune response. Thus, rLVS ΔcapB/bfr-iglABC shows improved immunogenicity and protective efficacy compared with parental LVS ΔcapB and, in contrast to LVS, has partial efficacy as immediate pre- and post-exposure prophylaxis.


Scientific Reports | 2018

Single vector platform vaccine protects against lethal respiratory challenge with Tier 1 select agents of anthrax, plague, and tularemia

Qingmei Jia; Richard A. Bowen; Barbara Jane Dillon; Saša Masleša-Galić; Brennan T. Chang; Austin C. Kaidi; Marcus A. Horwitz

Bacillus anthracis, Yersinia pestis, and Francisella tularensis are the causative agents of Tier 1 Select Agents anthrax, plague, and tularemia, respectively. Currently, there are no licensed vaccines against plague and tularemia and the licensed anthrax vaccine is suboptimal. Here we report F. tularensis LVS ΔcapB (Live Vaccine Strain with a deletion in capB)- and attenuated multi-deletional Listeria monocytogenes (Lm)-vectored vaccines against all three aforementioned pathogens. We show that LVS ΔcapB- and Lm-vectored vaccines express recombinant B. anthracis, Y. pestis, and F. tularensis immunoprotective antigens in broth and in macrophage-like cells and are non-toxic in mice. Homologous priming-boosting with the LVS ΔcapB-vectored vaccines induces potent antigen-specific humoral and T-cell-mediated immune responses and potent protective immunity against lethal respiratory challenge with all three pathogens. Protection against anthrax was far superior to that obtained with the licensed AVA vaccine and protection against tularemia was comparable to or greater than that obtained with the toxic and unlicensed LVS vaccine. Heterologous priming-boosting with LVS ΔcapB- and Lm-vectored B. anthracis and Y. pestis vaccines also induced potent protective immunity against lethal respiratory challenge with B. anthracis and Y. pestis. The single vaccine platform, especially the LVS ΔcapB-vectored vaccine platform, can be extended readily to other pathogens.


Proceedings of the National Academy of Sciences of the United States of America | 2000

Recombinant bacillus Calmette–Guérin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model

Marcus A. Horwitz; Günter Harth; Barbara Jane Dillon; Saša Masleša-Galić

Collaboration


Dive into the Saša Masleša-Galić's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Günter Harth

University of California

View shared research outputs
Top Co-Authors

Avatar

Qingmei Jia

University of California

View shared research outputs
Top Co-Authors

Avatar

Bai-Yu Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

Guenter Harth

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aleidy Silva

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge