Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Jung is active.

Publication


Featured researches published by Barbara Jung.


Journal of the National Cancer Institute | 2014

TGF-β: Duality of Function Between Tumor Prevention and Carcinogenesis

Daniel R. Principe; Jennifer A. Doll; Jessica Bauer; Barbara Jung; Hidayatullah G. Munshi; Laurent Bartholin; Boris Pasche; Chung Lee; Paul J. Grippo

Several mechanisms underlying tumor progression have remained elusive, particularly in relation to transforming growth factor beta (TGF-β). Although TGF-β initially inhibits epithelial growth, it appears to promote the progression of advanced tumors. Defects in normal TGF-β pathways partially explain this paradox, which can lead to a cascade of downstream events that drive multiple oncogenic pathways, manifesting as several key features of tumorigenesis (uncontrolled proliferation, loss of apoptosis, epithelial-to-mesenchymal transition, sustained angiogenesis, evasion of immune surveillance, and metastasis). Understanding the mechanisms of TGF-β dysregulation will likely reveal novel points of convergence between TGF-β and other pathways that can be specifically targeted for therapy.


American Journal of Pathology | 2012

Differential Regulation and Predictive Potential of MacroH2A1 Isoforms in Colon Cancer

Judith C. Sporn; Barbara Jung

Histone variant macroH2A1 has two splice isoforms, macroH2A1.1 and macroH2A1.2, with tissue- and cell-specific expression patterns. Although macroH2A1.1 is mainly found in differentiated, nonproliferative tissues, macroH2A1.2 is more generally expressed, including in tissues with ongoing cell proliferation. Consistently, studies in breast and lung cancer have demonstrated a strong correlation between macroH2A1.1 levels and proliferation, which is not the case for macroH2A1.2. This is the first study to assess the differential regulation and predictive potential of macroH2A1 isoforms in colon cancer. We found that macroH2A1.1 mRNA was down-regulated in primary colorectal cancer samples compared to matched normal colon tissue, whereas macroH2A1.2 was up-regulated. At the protein level, down-regulation of macroH2A1.1 correlated significantly with patient outcome (P = 0.0012), and loss of macroH2A1.1 was associated with a worse outcome. Over the course of Caco-2 cell differentiation, macroH2A1.1 was up-regulated at both the RNA and protein levels, whereas macroH2A1.2 was slightly down-regulated at the RNA level and stable at the protein level. These changes were accompanied by an antiproliferative phenotype exhibiting features of cellular senescence. Loss of macroH2A1.1 in vitro was characterized by a phenotype associated with cell growth and metastasis. These data demonstrate that macroH2A1 isoforms are differentially regulated in colon cancer, reflecting the degree of cellular differentiation. Notably, macroH2A1.1 expression predicts survival in colon cancer, thus identifying macroH2A1.1 as a novel colon cancer biomarker.


Gastroenterology | 2017

Transforming Growth Factor β Superfamily Signaling in Development of Colorectal Cancer

Barbara Jung; Jonas J. Staudacher; Daniel Beauchamp

Transforming growth factor (TGF)-β cytokines signal via a complex network of pathways to regulate proliferation, differentiation, adhesion, migration, and other functions in many cell types. A high percentage of colorectal tumors contain mutations that disrupt TGF-β family member signaling. We review how TGF-β family member signaling is altered during development of colorectal cancer, models of study, interaction of pathways, and potential therapeutic strategies.


PLOS ONE | 2012

Effects of Activin and TGFβ on p21 in Colon Cancer

Jessica Bauer; Judith C. Sporn; Jennifer Cabral; Jessica Gomez; Barbara Jung

Activin and TGFβ share SMAD signaling and colon cancers can inactivate either pathway alone or simultaneously. The differential effects of activin and TGFβ signaling in colon cancer have not been previously dissected. A key downstream target of TGFβ signaling is the cdk2 inhibitor p21 (p21cip1/waf1). Here, we evaluate activin-specific effects on p21 regulation and resulting functions. We find that TGFβ is a more potent inducer of growth suppression, while activin is a more potent inducer of apoptosis. Further, growth suppression and apoptosis by both ligands are dependent on SMAD4. However, activin downregulates p21 protein in a SMAD4-independent fashion in conjunction with increased ubiquitination and proteasomal degradation to enhance migration, while TGFβ upregulates p21 in a SMAD4-dependent fashion to affect growth arrest. Activin-induced growth suppression and cell death are dependent on p21, while activin-induced migration is counteracted by p21. Further, primary colon cancers show differential p21 expression consistent with their ACVR2/TGFBR2 receptor status. In summary, we report p21 as a differentially affected activin/TGFβ target and mediator of ligand-specific functions in colon cancer, which may be exploited for future risk stratification and therapeutic intervention.


Cancer Research | 2016

TGFβ signaling in the pancreatic tumor microenvironment promotes fibrosis and immune evasion to facilitate tumorigenesis

Daniel R. Principe; Brian DeCant; Emman Mascariñas; Elizabeth A. Wayne; Andrew M. Diaz; Naomi Akagi; Rosa F. Hwang; Boris Pasche; David W. Dawson; Deyu Fang; David J. Bentrem; Hidayatullah G. Munshi; Barbara Jung; Paul J. Grippo

In early pancreatic carcinogenesis, TGFβ acts as a tumor suppressor due to its growth-inhibitory effects in epithelial cells. However, in advanced disease, TGFβ appears to promote tumor progression. Therefore, to better understand the contributions of TGFβ signaling to pancreatic carcinogenesis, we generated mouse models of pancreatic cancer with either epithelial or systemic TGFBR deficiency. We found that epithelial suppression of TGFβ signals facilitated pancreatic tumorigenesis, whereas global loss of TGFβ signaling protected against tumor development via inhibition of tumor-associated fibrosis, stromal TGFβ1 production, and the resultant restoration of antitumor immune function. Similarly, TGFBR-deficient T cells resisted TGFβ-induced inactivation ex vivo, and adoptive transfer of TGFBR-deficient CD8(+) T cells led to enhanced infiltration and granzyme B-mediated destruction of developing tumors. These findings paralleled our observations in human patients, where TGFβ expression correlated with increased fibrosis and associated negatively with expression of granzyme B. Collectively, our findings suggest that, despite opposing the proliferation of some epithelial cells, TGFβ may promote pancreatic cancer development by affecting stromal and hematopoietic cell function. Therefore, the use of TGFBR inhibition to target components of the tumor microenvironment warrants consideration as a potential therapy for pancreatic cancer, particularly in patients who have already lost tumor-suppressive TGFβ signals in the epithelium. Cancer Res; 76(9); 2525-39. ©2016 AACR.


Oncotarget | 2017

Loss of TGFβ signaling promotes colon cancer progression and tumor-associated inflammation.

Daniel R. Principe; Brian DeCant; Jonas J. Staudacher; Dominic Vitello; Riley J. Mangan; Elizabeth A. Wayne; Emman Mascariñas; Andrew M. Diaz; Jessica Bauer; Ronald D. McKinney; Khashayarsha Khazaie; Boris Pasche; David W. Dawson; Hidayatullah G. Munshi; Paul J. Grippo; Barbara Jung

TGFβ has both tumor suppressive and tumor promoting effects in colon cancer. Also, TGFβ can affect the extent and composition of inflammatory cells present in tumors, contextually promoting and inhibiting inflammation. While colon tumors display intratumoral inflammation, the contributions of TGFβ to this process are poorly understood. In human patients, we found that epithelial loss of TGFβ signaling was associated with increased inflammatory burden; yet overexpression of TGFβ was also associated with increased inflammation. These findings were recapitulated in mutant APC models of murine tumorigenesis, where epithelial truncation of TGFBR2 led to lethal inflammatory disease and invasive colon cancer, mediated by IL8 and TGFβ1. Interestingly, mutant APC mice with global suppression of TGFβ signals displayed an intermediate phenotype, presenting with an overall increase in IL8-mediated inflammation and accelerated tumor formation, yet with a longer latency to the onset of disease observed in mice with epithelial TGFBR-deficiency. These results suggest that the loss of TGFβ signaling, particularly in colon epithelial cells, elicits a strong inflammatory response and promotes tumor progression. This implies that treating colon cancer patients with TGFβ inhibitors may result in a worse outcome by enhancing inflammatory responses.


Molecular Cancer | 2015

Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer.

Jessica Bauer; Ozkan Ozden; Naomi Akagi; Timothy Carroll; Daniel R. Principe; Jonas J. Staudacher; Martina E. Spehlmann; Lars Eckmann; Paul J. Grippo; Barbara Jung

BackgroundUnderstanding cell signaling pathways that contribute to metastatic colon cancer is critical to risk stratification in the era of personalized therapeutics. Here, we dissect the unique involvement of mitogenic pathways in a TGFβ or activin-induced metastatic phenotype of colon cancer.MethodMitogenic signaling/growth factor receptor status and p21 localization were correlated in primary colon cancers and intestinal tumors from either AOM/DSS treated ACVR2A (activin receptor 2) −/− or wild type mice. Colon cancer cell lines (+/− SMAD4) were interrogated for ligand-induced PI3K and MEK/ERK pathway activation and downstream protein/phospho-isoform expression/association after knockdown and pharmacologic inhibition of pathway members. EMT was assessed using epithelial/mesenchymal markers and migration assays.ResultsIn primary colon cancers, loss of nuclear p21 correlated with upstream activation of activin/PI3K while nuclear p21 expression was associated with TGFβ/MEK/ERK pathway activation. Activin, but not TGFβ, led to PI3K activation via interaction of ACVR1B and p85 independent of SMAD4, resulting in p21 downregulation. In contrast, TGFβ increased p21 via MEK/ERK pathway through a SMAD4-dependent mechanism. While activin induced EMT via PI3K, TGFβ induced EMT via MEK/ERK activation. In vivo, loss of ACVR2A resulted in loss of pAkt, consistent with activin-dependent PI3K signaling.ConclusionAlthough activin and TGFβ share growth suppressive SMAD signaling in colon cancer, they diverge in their SMAD4-independent pro-migratory signaling utilizing distinct mitogenic signaling pathways that affect EMT. p21 localization in colon cancer may determine a dominant activin versus TGFβ ligand signaling phenotype warranting further validation as a therapeutic biomarker prior to targeting TGFβ family receptors.


Oncotarget | 2016

PEDF inhibits pancreatic tumorigenesis by attenuating the fibroinflammatory reaction

Daniel R. Principe; Brian DeCant; Andrew M. Diaz; Riley J. Mangan; Rosa F. Hwang; Andrew M. Lowy; Brandon B. Shetuni; Bharath K. Sreekumar; Chuhan Chung; David J. Bentrem; Hidayatullah G. Munshi; Barbara Jung; Paul J. Grippo; Faraz Bishehsari

Pancreatic cancer is characterized by a pronounced fibro-inflammatory reaction that has been shown to contribute to cancer progression. Previous reports have demonstrated that pigment epithelium-derived factor (PEDF) has potent tumor suppressive effects in pancreatic cancer, though little is known about the mechanisms by which PEDF limits pancreatic tumorigenesis. We therefore employed human specimens, as well as mouse and in vitro models, to explore the effects of PEDF upon the pancreatic microenvironment. We found that PEDF expression is decreased in human pancreatic cancer samples compared to non-malignant tissue. Furthermore, PEDF-deficient patients displayed increased intratumoral inflammation/fibrosis. In mice, genetic ablation of PEDF increased cerulein-induced inflammation and fibrosis, and similarly enhanced these events in the background of oncogenic KRAS. In vitro, recombinant PEDF neutralized macrophage migration as well as inhibited macrophage-induced proliferation of tumor cells. Additionally, recombinant PEDF suppressed the synthesis of pro-inflammatory/pro-fibrotic cytokines both in vivo and in vitro, and reduced collagen I deposition and TGFβ synthesis by pancreatic stellate cells, consistent with reduced fibrosis. Combined, our results demonstrate that PEDF limits pancreatic cancer progression by attenuating the fibro-inflammatory reaction, and makes restoration of PEDF signaling a potential therapeutic approach to study in pancreatic cancer.


Scientific Reports | 2017

Activin signaling is an essential component of the TGF-β induced pro-metastatic phenotype in colorectal cancer

Jonas J. Staudacher; Jessica Bauer; Arundhati Jana; Jun Tian; Timothy Carroll; Georgina Mancinelli; Ozkan Ozden; Nancy Krett; Grace Guzman; David Kerr; Paul J. Grippo; Barbara Jung

Advanced colorectal cancer (CRC) remains a critical health care challenge worldwide. Various TGF-β superfamily members are important in colorectal cancer metastasis, but their signaling effects and predictive value have only been assessed in isolation. Here, we examine cross-regulation and combined functions of the two most prominent TGF-β superfamily members activin and TGF-β in advanced colorectal cancer. In two clinical cohorts we observed by immune-based assay that combined serum and tissue activin and TGF-β ligand levels predicts outcome in CRC patients and is superior to single ligand assessment. While TGF-β growth suppression is independent of activin, TGF-β treatment leads to increased activin secretion in colon cancer cells and TGF-β induced cellular migration is dependent on activin, indicating pathway cross-regulation and functional interaction in vitro. mRNA expression of activin and TGF-β pathway members were queried in silico using the TCGA data set. Coordinated ligand and receptor expression is common in solid tumors for activin and TGF-β pathway members. In conclusion, activin and TGF-β are strongly connected signaling pathways that are important in advanced CRC. Assessing activin and TGF-β signaling as a unit yields important insights applicable to future diagnostic and therapeutic interventions.


OncoImmunology | 2014

Anti-p21 autoantibodies detected in colorectal cancer patients: A proof of concept study

Faraz Bishehsari; Johannes S. Gach; Naomi Akagi; Molly K Webber; Jessica Bauer; Barbara Jung

Whereas the presence of autoantibodies in cancer patients has been acknowledged, their diagnostic or therapeutic significance has yet to be established. This is due, at least in part, to the lack of robust screening techniques to detect and characterize such antibodies for further assessment. In this study, we screened colorectal cancer (CRC) patient sera for antibodies specifically targeting the key cell cycle inhibitory factor p21 encoded by the cyclin-dependent kinase inhibitor 1A (CDKN1A). Anti-p21 antibody titers were higher in CRC patient samples versus controls, correlating with a more advanced disease stage and lymph node involvement. Further, we isolated for the first time a specific human antibody fragment against p21, which could potentially be useful as a tool to study tumorigenicity in CRC patients.

Collaboration


Dive into the Barbara Jung's collaboration.

Top Co-Authors

Avatar

Jessica Bauer

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Paul J. Grippo

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Daniel R. Principe

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Jonas J. Staudacher

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Timothy Carroll

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Naomi Akagi

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Ozkan Ozden

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian DeCant

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Faraz Bishehsari

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge