Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul J. Grippo is active.

Publication


Featured researches published by Paul J. Grippo.


Journal of the National Cancer Institute | 2014

TGF-β: Duality of Function Between Tumor Prevention and Carcinogenesis

Daniel R. Principe; Jennifer A. Doll; Jessica Bauer; Barbara Jung; Hidayatullah G. Munshi; Laurent Bartholin; Boris Pasche; Chung Lee; Paul J. Grippo

Several mechanisms underlying tumor progression have remained elusive, particularly in relation to transforming growth factor beta (TGF-β). Although TGF-β initially inhibits epithelial growth, it appears to promote the progression of advanced tumors. Defects in normal TGF-β pathways partially explain this paradox, which can lead to a cascade of downstream events that drive multiple oncogenic pathways, manifesting as several key features of tumorigenesis (uncontrolled proliferation, loss of apoptosis, epithelial-to-mesenchymal transition, sustained angiogenesis, evasion of immune surveillance, and metastasis). Understanding the mechanisms of TGF-β dysregulation will likely reveal novel points of convergence between TGF-β and other pathways that can be specifically targeted for therapy.


Cancer Research | 2011

Three dimensional collagen I promotes gemcitabine resistance in pancreatic cancer through MT1-MMP-mediated expression of HMGA2

Surabhi Dangi-Garimella; Seth B. Krantz; Morgan R. Barron; Mario A. Shields; Michael J. Heiferman; Paul J. Grippo; David J. Bentrem; Hidayatullah G. Munshi

One of the hallmarks of human pancreatic ductal adenocarcinoma (PDAC) is its pronounced type I collagen-rich fibrotic reaction. Although recent reports have shown that the fibrotic reaction can limit the efficacy of gemcitabine chemotherapy, the underlying mechanisms remain poorly understood. In this article, we show that the type I collagen allows PDAC cells to override checkpoint arrest induced by gemcitabine. Relative to cells grown on tissue culture plastic, PDAC cells grown in 3-dimensional collagen microenvironment have minimal Chk1 phosphorylation and continue to proliferate in the presence of gemcitabine. Collagen increases membrane type 1 matrix metalloproteinase (MT1-MMP)-dependent ERK1/2 phosphorylation to limit the effect of gemcitabine. Collagen also increases MT1-MMP-dependent high mobility group A2 (HMGA2) expression, a nonhistone DNA-binding nuclear protein involved in chromatin remodeling and gene transcription, to attenuate the effect of gemcitabine. Overexpression of MT1-MMP in the collagen microenvironment increases ERK1/2 phosphorylation and HMGA2 expression, and thereby further attenuates gemcitabine-induced checkpoint arrest. MT1-MMP also allows PDAC cells to continue to proliferate in the presence of gemcitabine in a xenograft mouse model. Clinically, human tumors with increased MT1-MMP show increased HMGA2 expression. Overall, our data show that collagen upregulation of MT1-MMP contributes to gemcitabine resistance in vitro and in a xenograft mouse model, and suggest that targeting MT1-MMP could be a novel approach to sensitize pancreatic tumors to gemcitabine.


Cancer Research | 2005

5-Lipoxygenase, a Marker for Early Pancreatic Intraepithelial Neoplastic Lesions

Rene Hennig; Paul J. Grippo; Xian Zhong Ding; Sambasiva Rao; Markus W. Büchler; Helmut Friess; Mark S. Talamonti; Richard H. Bell; Thomas E. Adrian

Pancreatic cancer has an abysmal prognosis because of late diagnosis. Therefore, it is important to identify risk factors if we are to be able to prevent and detect this cancer in an early, noninvasive stage. Pancreatic intraepithelial neoplasias (PanIN) are the precursor lesions which could be an ideal target for chemoprevention. This study shows up-regulation of 5-lipoxygenase (5-LOX) in all grades of human PanINs and early lesions of pancreatic cancer in two different animal models (EL-Kras mice and N -nitrosobis(2-oxopropyl)amine–treated hamsters) by immunohistochemistry. The results were consistent in all tissues examined, including seven chronic pancreatitis patients, four pancreatic cancer patients, one multiorgan donor, nine EL-Kras mice, and three N -nitrosobis(2-oxopropyl)amine–treated hamsters, all with PanINs. Overexpression of 5-LOX in NIH3T3 cells resulted in greater sensitivity of these cells to the growth inhibitory effects of the 5-LOX inhibitor Rev5901. These findings provide evidence that 5-LOX plays a key role in the development of pancreatic cancer. Furthermore, the lipoxygenase pathway may be a target for the prevention of this devastating disease.


Cancer Research | 2011

Mast cell 5-lipoxygenase activity promotes intestinal polyposis in APC Δ468 mice

Eric C. Cheon; Khashayarsha Khazaie; Mohammad W. Khan; Matthew J. Strouch; Seth B. Krantz; Joseph D. Phillips; Nichole R. Blatner; Laura M. Hix; Ming Zhang; Kristen L. Dennis; Mohammed R. Salabat; Michael J. Heiferman; Paul J. Grippo; Hidayatullah G. Munshi; Elias Gounaris; David J. Bentrem

Arachidonic acid metabolism has been implicated in colon carcinogenesis, but the role of hematopoietic 5-lipoxygenase (5LO) that may impact tumor immunity in development of colon cancer has not been explored. Here we show that tissue-specific deletion of the 5LO gene in hematopoietic cells profoundly attenuates polyp development in the APC(Δ468) murine model of colon polyposis. In vitro analyses indicated that mast cells in particular utilized 5LO to limit proliferation of intestinal epithelial cells and to mobilize myeloid-derived suppressor cells (MDSCs). Mice lacking hemapoietic expression of 5LO exhibited reduced recruitment of MDSCs to the spleen, mesenteric lymph nodes, and primary tumor site. 5LO deficiency also reduced the activity in MDSCs of arginase-1, which is thought to be critical for MDSC function. Together, our results establish a pro-tumorigenic role of hematopoietic 5LO in the immune microenvironment and suggest 5LO inhibition as an avenue for future investigation in treatment of colorectal polyposis and cancer.


Oncogene | 2011

Collagen regulation of let-7 in pancreatic cancer involves TGF-β1-mediated membrane type 1-matrix metalloproteinase expression.

Surabhi Dangi-Garimella; Matthew J. Strouch; Paul J. Grippo; David J. Bentrem; Hidayatullah G. Munshi

Pancreatic ductal adenocarcinoma (PDAC) is associated with a pronounced collagen-rich fibrosis known as desmoplastic reaction; however, the role of fibrosis in PDAC is poorly understood. In this report we show that collagen can regulate the tumor suppressive let-7 family of microRNAs in pancreatic cancer cells. PDAC cells growing in 3D collagen gels repress mature let-7 without affecting the precursor form of let-7 in part through increased expression of membrane type 1-matrix metalloproteinase (MT1-MMP, MMP-14) and ERK1/2 activation. PDAC cells in collagen also demonstrate increased TGF-β1 signaling, and blocking TGF-β1 signaling attenuated collagen-induced MT1-MMP expression, ERK1/2 activation and repression of let-7 levels. Although MT1-MMP overexpression was not sufficient to inhibit let-7 on 2D tissue culture plastic, overexpression of MT1-MMP in PDAC cells embedded in 3D collagen gels or grown in vivo repressed let-7 levels. Importantly, MT1-MMP expression significantly correlated with decreased levels of let-7 in human PDAC tumor specimens. Overall, our study emphasizes the interplay between the key proteinase MT1-MMP and its substrate type I collagen in modulating microRNA expression, and identifies an additional mechanism by which fibrosis may contribute to PDAC progression.


Gastroenterology | 2012

The Phosphatase PHLPP1 Regulates Akt2, Promotes Pancreatic Cancer Cell Death, and Inhibits Tumor Formation

Mouad Edderkaoui; Ryan M. Moore; Guido Eibl; Noriyuki Kasahara; Janet Treger; Paul J. Grippo; Julia Mayerle; Markus M. Lerch; Anna S. Gukovskaya

BACKGROUND & AIMS The kinase Akt mediates resistance of pancreatic cancer (PaCa) cells to death and is constitutively active (phosphorylated) in cancer cells. Whereas the kinases that activate Akt are well characterized, less is known about phosphatases that dephosporylate and thereby inactivate it. We investigated regulation of Akt activity and cell death by the phosphatases PHLPP1 and PHLPP2 in PaCa cells, mouse models of PaCa, and human pancreatic ductal adenocarcinoma (PDAC). METHODS We measured the effects of PHLPP overexpression or knockdown with small interfering RNAs on Akt activation and cell death. We examined regulation of PHLPPs by growth factors and reactive oxygen species, as well as associations between PHLPPs and tumorigenesis. RESULTS PHLPP overexpression inactivated Akt, whereas PHLPP knockdown increased phosphorylation of Akt in PaCa cells. Levels of PHLPPs were greatly reduced in human PDAC and in mouse genetic and xenograft models of PaCa. PHLPP activities in PaCa cells were down-regulated by growth factors and Nox4 reduced nicotinamide adenine dinucleotide phosphate oxidase. PHLPP1 selectively dephosphorylated Akt2, whereas PHLPP2 selectively dephosphorylated Akt1. Akt2, but not Akt1, was up-regulated in PDAC, and Akt2 levels correlated with mortality. Consistent with these results, high levels of PHLPP1, which dephosphorylates Akt2 (but not PHLPP2, which dephosphorylates Akt1), correlated with longer survival times of patients with PDAC. In mice, xenograft tumors derived from PaCa cells that overexpress PHLPP1 (but not PHLPP2) had inactivated Akt, greater extent of apoptosis, and smaller size. CONCLUSIONS PHLPP1 has tumor suppressive activity and might represent a therapeutic or diagnostic tool for PDAC.


Journal of Surgical Research | 2011

Apigenin down-regulates the hypoxia response genes: HIF-1α, GLUT-1, and VEGF in human pancreatic cancer cells.

Laleh G. Melstrom; Mohammad R. Salabat; Xian Zhong Ding; Matthew J. Strouch; Paul J. Grippo; Salida Mirzoeva; Jill C. Pelling; David J. Bentrem

BACKGROUND The flavonoid apigenin exhibits anti-proliferative and anti-angiogenic activities. Our objective was to evaluate the effect of apigenin on hypoxia responsive genes important in pancreatic cancer cell proliferation. MATERIALS AND METHODS Immunohistochemistry for GLUT-1 expression was conducted on human pancreatic cancer samples and adjacent controls. Real-time RT-PCR, Western blot analysis, and enzyme-linked immunosorbent assay (ELISA) were conducted on CD18 and S2-013 human pancreatic cancer cells treated with apigenin (0-50 μM) in normoxic and hypoxic conditions to evaluate HIF-1α, GLUT-1, and VEGF mRNA and protein expression and secretion. RESULTS GLUT-1 expression was significantly increased in pancreatic adenocarcinoma samples versus adjacent controls (P < 0.001). Hypoxic conditions induced HIF-1α, GLUT-1, and VEGF protein expression in both CD18 and S2-013 pancreatic cancer cells. Apigenin (50 μM) blocked hypoxia induced up-regulation of all three proteins in both cell lines. Apigenin also impeded hypoxia-mediated induction of GLUT-1 and VEGF mRNA in both cell lines (P < 0.05). CONCLUSIONS Apigenin inhibits HIF-1α, GLUT-1, and VEGF mRNA and protein expression in pancreatic cancer cells in both normoxic and hypoxic conditions. This may account for the mechanism of apigenins anti-proliferative and anti-angiogenic effects and further supports the potential of apigenin as a future chemopreventive agent for pancreatic cancer.


Molecular Cancer Research | 2011

MT1-MMP cooperates with Kras(G12D) to promote pancreatic fibrosis through increased TGF-β signaling.

Seth B. Krantz; Mario A. Shields; Surabhi Dangi-Garimella; Eric C. Cheon; Morgan R. Barron; Rosa F. Hwang; M. Sambasiva Rao; Paul J. Grippo; David J. Bentrem; Hidayatullah G. Munshi

Pancreatic cancer is associated with a pronounced fibrotic reaction that was recently shown to limit delivery of chemotherapy. To identify potential therapeutic targets to overcome this fibrosis, we examined the interplay between fibrosis and the key proteinase membrane type 1-matrix metalloproteinase (MT1-MMP, MMP-14), which is required for growth and invasion in the collagen-rich microenvironment. In this article, we show that compared with control mice (Kras+/MT1-MMP−) that express an activating KrasG12D mutation necessary for pancreatic cancer development, littermate mice that express both MT1-MMP and KrasG12D (Kras+/MT1-MMP+) developed a greater number of large, dysplastic mucin-containing papillary lesions. These lesions were associated with a significant amount of surrounding fibrosis, increased α-smooth muscle actin (+) cells in the stroma, indicative of activated myofibroblasts, and increased Smad2 phosphorylation. To further understand how MT1-MMP promotes fibrosis, we established an in vitro model to examine the effect of expressing MT1-MMP in pancreatic ductal adenocarcinoma (PDAC) cells on stellate cell collagen deposition. Conditioned media from MT1-MMP–expressing PDAC cells grown in three-dimensional collagen enhanced Smad2 nuclear translocation, promoted Smad2 phosphorylation, and increased collagen production by stellate cells. Inhibiting the activity or expression of the TGF-β type I receptor in stellate cells attenuated MT1-MMP conditioned medium–induced collagen expression by stellate cells. In addition, a function-blocking anti–TGF-β antibody also inhibited MT1-MMP conditioned medium–induced collagen expression in stellate cells. Overall, we show that the bona fide collagenase MT1-MMP paradoxically contributes to fibrosis by increasing TGF-β signaling and that targeting MT1-MMP may thus help to mitigate fibrosis. Mol Cancer Res; 9(10); 1294–304. ©2011 AACR.


Gut | 2012

Concurrent PEDF deficiency and Kras mutation induce invasive pancreatic cancer and adipose-rich stroma in mice

Paul J. Grippo; Philip Fitchev; David J. Bentrem; Laleh G. Melstrom; Surabhi Dangi-Garimella; Seth B. Krantz; Michael J. Heiferman; Chuhan Chung; Kevin Adrian; Mona Cornwell; Jan B. Flesche; Sambasiva Rao; Mark S. Talamonti; Hidayatullah G. Munshi; Susan E. Crawford

Background and aims Pigment epithelium-derived factor (PEDF), a non-inhibitory SERPIN with potent antiangiogenic activity, has been recently implicated in metabolism and adipogenesis, both of which are known to influence pancreatic cancer progression. Increased pancreatic fat in human pancreatic tumour correlates with greater tumour dissemination while PEDF deficiency in mice promotes pancreatic hyperplasia and visceral obesity. Oncogenic Ras, the most common mutation in pancreatic ductal adenocarcinoma (PDAC), has similarly been shown to promote adipogenesis and premalignant lesions. Methods In order to determine whether concurrent loss of PEDF is sufficient to promote adipogenesis and tumorigenesis in the pancreas, the authors ablated PEDF in an EL-KrasG12D mouse model of non-invasive cystic papillary neoplasms. Results EL-KrasG12D/PEDF deficient mice developed invasive PDAC associated with enhanced matrix metalloproteinase (MMP)-2 and MMP-9 expression and increased peripancreatic fat with adipocyte hypertrophy and intrapancreatic adipocyte infiltration (pancreatic steatosis). In support of increased adipogenesis, the stroma of the pancreas of EL-KrasG12D/PEDF deficient mice demonstrated higher tissue levels of two lipid droplet associated proteins, tail-interacting protein 47 (TIP47, perilipin 3) and adipose differentiation-related protein (ADRP, Pperilipin 2), while adipose triglyceride lipase, a key factor in lipolysis, was decreased. In patients with PDAC, both tissue and serum levels of PEDF were decreased, stromal TIP47 expression was higher and the tissue VEGF to PEDF ratio was increased (p<0.05). Conclusions These data highlight the importance of lipid metabolism in the tumour microenvironment and identify PEDF as a critical negative regulator of both adiposity and tumour invasion in the pancreas.


Journal of Surgical Research | 2011

A high omega-3 fatty acid diet mitigates murine pancreatic precancer development.

Matthew J. Strouch; Yongzeng Ding; Mohammad R. Salabat; Laleh G. Melstrom; Kevin Adrian; Christopher M. Quinn; Carolyn Pelham; Sambasiva Rao; Thomas E. Adrian; David J. Bentrem; Paul J. Grippo

BACKGROUND Diets containing omega-3 (ω-3) fat have been associated with decreased tumor development in the colon, breast, and prostate. We assessed the effects of a diet rich in ω-3 fat on the development of pancreatic precancer in elastase (EL)-Kras transgenic mice and examined the effect of an ω-3 fatty acid on pancreatic cancer cells in vitro. MATERIALS AND METHODS Two cohorts of EL-Kras mice were fed a high ω-3 fat diet (23% menhaden oil) for 8 and 11 mo and compared with age-matched EL-Kras mice fed standard chow (5% fat). Pancreata from all mice were scored for incidence and frequency of precancerous lesions. Immunohistochemistry was performed for proliferating cell nuclear antigen (PCNA) to assess proliferative index in lesions of mice fed either a high ω-3 or standard diet. In vitro, the effect of the ω-3 fatty acid, docosahexaenoic acid (DHA), on two pancreatic cancer cell lines was assessed. Cancer cell proliferation was assessed with an MTT assay; cell cycle analysis was performed by flow cytometry; and apoptosis was assessed with annexin/PI staining. RESULTS The incidence, frequency, and proliferative index of pancreatic precancer in EL-Kras mice was reduced in mice fed a high ω-3 fat diet compared with mice fed a standard chow. In vitro, DHA treatment resulted in a concentration-dependent decrease in proliferation through both G1/G0 cell cycle arrest and induction of apoptosis. CONCLUSIONS A high ω-3 fat diet mitigates pancreatic precancer by inhibition of cellular proliferation through induction of cell cycle arrest and apoptosis.

Collaboration


Dive into the Paul J. Grippo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel R. Principe

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Brian DeCant

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Barbara Jung

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Kevin Adrian

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mouad Edderkaoui

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Diaz

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Pandol

Cedars-Sinai Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge