Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara L. Hempstead is active.

Publication


Featured researches published by Barbara L. Hempstead.


Trends in Neurosciences | 1995

p75 and Trk: A two-receptor system

Moses V. Chao; Barbara L. Hempstead

The neurotrophin family of survival factors is distinguished by a unique receptor-signaling system that is composed of two transmembrane receptor proteins. Nerve growth factor (NGF), brain-derived neurotrophic factor, neurotrophin-3 (NT-3) and NT-4/5 share similar protein structures and biological functions and interact with two different types of cell-surface proteins, the Trk family of receptor tyrosine kinases, and the p75, or low-affinity neurotrophin receptor. An important question is whether a dual receptor system is necessary for neurotrophin action. Evidence indicates that co-expression of the two genes for the p75 receptor and the Trk NGF receptor can potentially lead to greater responsiveness to NGF, and suggests additional levels of regulation for the family of neurotrophin factors.


Nature | 2004

Sortilin is essential for proNGF-induced neuronal cell death.

Anders Nykjaer; Ramee Lee; Kenneth K. Teng; Pernille Jansen; Peder Madsen; Morten Nielsen; C Jacobsen; Marco Kliemannel; Elisabeth Schwarz; Thomas E. Willnow; Barbara L. Hempstead; Claus Munck Petersen

Sortilin (∼95 kDa) is a member of the recently discovered family of Vps10p-domain receptors, and is expressed in a variety of tissues, notably brain, spinal cord and muscle. It acts as a receptor for neurotensin, but predominates in regions of the nervous system that neither synthesize nor respond to this neuropeptide, suggesting that sortilin has additional roles. Sortilin is expressed during embryogenesis in areas where nerve growth factor (NGF) and its precursor, proNGF, have well-characterized effects. These neurotrophins can be released by neuronal tissues, and they regulate neuronal development through cell survival and cell death signalling. NGF regulates cell survival and cell death via binding to two different receptors, TrkA and p75NTR (ref. 10). In contrast, proNGF selectively induces apoptosis through p75NTR but not TrkA. However, not all p75NTR-expressing cells respond to proNGF, suggesting that additional membrane proteins are required for the induction of cell death. Here we report that proNGF creates a signalling complex by simultaneously binding to p75NTR and sortilin. Thus sortilin acts as a co-receptor and molecular switch governing the p75NTR-mediated pro-apoptotic signal induced by proNGF.


The Journal of Neuroscience | 2004

Variant Brain-Derived Neurotrophic Factor (BDNF) (Met66) Alters the Intracellular Trafficking and Activity-Dependent Secretion of Wild-Type BDNF in Neurosecretory Cells and Cortical Neurons

Zhe Yu Chen; Paresh D. Patel; Gayatree Sant; Chui Xiang Meng; Kenneth K. Teng; Barbara L. Hempstead; Francis S. Lee

Brain-derived neurotrophic factor (BDNF) plays a critical role in nervous system and cardiovascular development and function. Recently, a common single nucleotide polymorphism in the bdnf gene, resulting in a valine to methionine substitution in the prodomain (BDNFMet), has been shown to lead to memory impairment and susceptibility to neuropsychiatric disorders in humans heterozygous for the variant BDNF. When expressed by itself in hippocampal neurons, less BDNFMet is secreted in an activity-dependent manner. The nature of the cellular defect when both BDNFMet and wild-type BDNF (BDNFVal) are present in the same cell is not known. Given that this is the predominant expression profile in humans, we examined the effect of coexpressed BDNFMet on BDNFVal intracellular trafficking and processing. Our data indicate that abnormal trafficking of BDNFMet occurred only in neuronal and neurosecretory cells and that BDNFMet could alter the intracellular distribution and activity-dependent secretion of BDNFVal. We determined that, when coexpressed in the same cell, ∼70% of the variant BDNF forms BDNFVal·BDNFMet heterodimers, which are inefficiently sorted into secretory granules resulting in a quantitative decreased secretion. Finally, we determined the form of BDNF secreted in an activity-dependent manner and observed no differences in the forms of BDNFMet or the BDNFVal·BDNFMet heterodimer compared with BDNFVal. Together, these findings indicate that components of the regulated secretory machinery interacts specifically with a signal in the BDNF prodomain and that perturbations in BDNF trafficking may lead to selective impairment in CNS function.


The Journal of Neuroscience | 2005

ProBDNF Induces Neuronal Apoptosis via Activation of a Receptor Complex of p75NTR and Sortilin

Henry K. Teng; Kenneth K. Teng; Ramee Lee; Saundrene Wright; Seema Tevar; Ramiro D. Almeida; Pouneh Kermani; Risa Torkin; Zhe-Yu Chen; Francis S. Lee; Rosemary Kraemer; Anders Nykjaer; Barbara L. Hempstead

Brain-derived neurotrophic factor (BDNF) is best characterized for critical roles in neuronal survival, differentiation, and synaptic modulation mediated by the TrkB receptor tyrosine kinase. Developmentally regulated death signaling by BDNF has also been demonstrated via activation of p75NTR. Because recent studies suggest that proNGF, the precursor form of NGF, is more active than mature NGF in inducing apoptosis after binding to p75NTR and a coreceptor, sortilin, we asked whether the precursor of BDNF (proBDNF) is also a proapoptotic ligand in the nervous system. proBDNF is secreted by cultured neurons, and recombinant proBDNF binds to sortilin. In sympathetic neurons coexpressing sortilin and p75NTR, we found that proBDNF is an apoptotic ligand that induces death at subnanomolar concentrations. In contrast, mature BDNF, but not proBDNF, is effective in inducing TrkB phosphorylation. proBDNF effects are dependent on cellular coexpression of both p75NTR and sortilin, because neurons deficient in p75NTR are resistant to proBDNF-induced apoptosis, and competitive antagonists of sortilin block sympathetic neuron death. Moreover, addition of preformed complexes of soluble sortilin and proBDNF failed to induce apoptosis of cells coexpressing both sortilin and p75NTR, suggesting that interaction of proBDNF with both receptors on the cell surface is required to initiate cell death. Together with our past findings, these data suggest that the neurotrophin family is capable of modulating diverse biological processes via differential processing of the proneurotrophins.


Nature Neuroscience | 2005

Activation of p75NTR by proBDNF facilitates hippocampal long-term depression

Newton H. Woo; Henry K. Teng; Chia-Jen Siao; Cristina Chiaruttini; Petti T. Pang; Teresa A. Milner; Barbara L. Hempstead; Bai Lu

Pro- and mature brain-derived neurotrophic factor (BDNF) activate two distinct receptors: p75 neurotrophin receptor (p75NTR) and TrkB. Mature BDNF facilitates hippocampal synaptic potentiation through TrkB. Here we report that proBDNF, by activating p75NTR, facilitates hippocampal long-term depression (LTD). Electron microscopy showed that p75NTR localized in dendritic spines, in addition to afferent terminals, of CA1 neurons. Deletion of p75NTR in mice selectively impaired the NMDA receptor–dependent LTD, without affecting other forms of synaptic plasticity. p75NTR−/− mice also showed a decrease in the expression of NR2B, an NMDA receptor subunit uniquely involved in LTD. Activation of p75NTR by proBDNF enhanced NR2B-dependent LTD and NR2B-mediated synaptic currents. These results show a crucial role for proBDNF-p75NTR signaling in LTD and its potential mechanism, and together with the finding that mature BDNF promotes synaptic potentiation, suggest a bidirectional regulation of synaptic plasticity by proBDNF and mature BDNF.


Proceedings of the National Academy of Sciences of the United States of America | 2012

In vitro microvessels for the study of angiogenesis and thrombosis

Ying Zheng; Junmei Chen; Michael Craven; Nakwon Choi; Samuel Totorica; Anthony Diaz-Santana; Pouneh Kermani; Barbara L. Hempstead; Claudia Fischbach-Teschl; José A. López; Abraham D. Stroock

Microvascular networks support metabolic activity and define microenvironmental conditions within tissues in health and pathology. Recapitulation of functional microvascular structures in vitro could provide a platform for the study of complex vascular phenomena, including angiogenesis and thrombosis. We have engineered living microvascular networks in three-dimensional tissue scaffolds and demonstrated their biofunctionality in vitro. We describe the lithographic technique used to form endothelialized microfluidic vessels within a native collagen matrix; we characterize the morphology, mass transfer processes, and long-term stability of the endothelium; we elucidate the angiogenic activities of the endothelia and differential interactions with perivascular cells seeded in the collagen bulk; and we demonstrate the nonthrombotic nature of the vascular endothelium and its transition to a prothrombotic state during an inflammatory response. The success of these microvascular networks in recapitulating these phenomena points to the broad potential of this platform for the study of cardiovascular biology and pathophysiology.


Journal of Biological Chemistry | 1997

A Molecular Redox Switch on p21ras STRUCTURAL BASIS FOR THE NITRIC OXIDE-p21ras INTERACTION

Harry M. Lander; David P. Hajjar; Barbara L. Hempstead; Urooj A. Mirza; Brian T. Chait; Sharon L. Campbell; Lawrence A. Quilliam

We have identified the site of molecular interaction between nitric oxide (NO) and p21ras responsible for initiation of signal transduction. We found that p21ras was singly S-nitrosylated and localized this modification to a fragment of p21ras containing Cys118. A mutant form of p21ras, in which Cys118 was changed to a serine residue and termed p21rasC118S, was not S-nitrosylated. NO-related species stimulated guanine nucleotide exchange on wild-type p21ras, resulting in an active form, but not on p21rasC118S. Furthermore, in contrast to parental Jurkat T cells, NO-related species did not stimulate mitogen-activated protein kinase activity in cells transfected with p21rasC118S. These data indicate that Cys118 is a critical site of redox regulation of p21ras, and S-nitrosylation of this residue triggers guanine nucleotide exchange and downstream signaling.


The Journal of Neuroscience | 2009

New Insights in the Biology of BDNF Synthesis and Release: Implications in CNS Function

Michael E. Greenberg; Baoji Xu; Bai Lu; Barbara L. Hempstead

BDNF has pleiotropic effects on neuronal development and synaptic plasticity that underlie circuit formation and cognitive function. Recent breakthroughs reveal that neuronal activity regulates BDNF cell biology, including Bdnf transcription, dendritic targeting and trafficking of BDNF mRNA and protein, and secretion and extracellular conversion of proBDNF to mature BDNF. Defects in these mechanisms contribute differentially to cognitive dysfunction and anxiety-like behaviors. Here we review recent studies, presented at a symposium at Neuroscience 2009, that describe regulatory mechanisms that permit rapid and dynamic refinement of BDNF actions in neurons.


Neuron | 2002

ProNGF Induces p75-Mediated Death of Oligodendrocytes following Spinal Cord Injury

Michael S. Beattie; Anthony W. Harrington; Ramee Lee; Ju Young Kim; Sheri L Boyce; Frank M. Longo; Jacqueline C. Bresnahan; Barbara L. Hempstead; Sung Ok Yoon

The neurotrophin receptor p75 is induced by various injuries to the nervous system, but its role after injury has remained unclear. Here, we report that p75 is required for the death of oligodendrocytes following spinal cord injury, and its action is mediated mainly by proNGF. Oligodendrocytes undergoing apoptosis expressed p75, and the absence of p75 resulted in a decrease in the number of apoptotic oligodendrocytes and increased survival of oligodendrocytes. ProNGF is likely responsible for activating p75 in vivo, since the proNGF from the injured spinal cord induced apoptosis among p75(+/+), but not among p75(-/-), oligodendrocytes in culture, and its action was blocked by proNGF-specific antibody. Together, these data suggest that the role of proNGF is to eliminate damaged cells by activating the apoptotic machinery of p75 after injury.


Neuron | 1992

Overexpression of the trk tyrosine kinase rapidly accelerates nerve growth factor-induced differentiation

Barbara L. Hempstead; Stuart J. Rabin; Leni Kaplan; Susan W. Reid; Luis F. Parada; David R. Kaplant

To investigate the role of the gp140trk receptor tyrosine kinase in nerve growth factor (NGF)-induced differentiation, we have overexpressed gp140trk in the NGF-responsive PC12 cell line. Here we demonstrate that overexpression of gp140trk results in marked changes in NGF-induced differentiation. Whereas PC12 cells elaborated neurites after 2 days of continuous exposure to NGF, PC12 cells overexpressing gp140trk by 20-fold(trk-PC12) began this process within hours. Compared with wild-type PC12 cells, trk-PC12 exhibited an increase in both high and low affinity NGF-binding sites. Furthermore, trk-PC12 cells displayed an enhanced level of NGF-dependent gp140trk autophosphorylation, and this activity was sustained for many hours following ligand binding. The tyrosine phosphorylation or activity of several cellular proteins, such as PLC-gamma 1, PI-3 kinase, and Erk1 and the expression of the mRNA for the late response gene transin were also sustained as a consequence of gp140trk overexpression. The data indicate that overexpression of gp140trk in PC12 cells markedly accelerates NGF-induced differentiation pathways, possibly through the elevation of gp140trk tyrosine kinase activity.

Collaboration


Dive into the Barbara L. Hempstead's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bai Lu

Tsinghua University

View shared research outputs
Researchain Logo
Decentralizing Knowledge