Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moses V. Chao is active.

Publication


Featured researches published by Moses V. Chao.


Nature Reviews Neuroscience | 2003

Neurotrophins and their receptors: A convergence point for many signalling pathways

Moses V. Chao

The neurotrophins are a family of proteins that are essential for the development of the vertebrate nervous system. Each neurotrophin can signal through two different types of cell surface receptor — the Trk receptor tyrosine kinases and the p75 neurotrophin receptor. Given the wide range of activities that are now associated with neurotrophins, it is probable that additional regulatory events and signalling systems are involved. Here, I review recent findings that neurotrophins, in addition to promoting survival and differentiation, exert various effects through surprising interactions with other receptors and ion channels.


Nature | 2001

Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition.

Huai-hu Chuang; Elizabeth D. Prescott; Haeyoung Kong; Shannon Shields; Sven-Eric Jordt; Allan I. Basbaum; Moses V. Chao; David Julius

Tissue injury generates endogenous factors that heighten our sense of pain by increasing the response of sensory nerve endings to noxious stimuli. Bradykinin and nerve growth factor (NGF) are two such pro-algesic agents that activate G-protein-coupled (BK2) and tyrosine kinase (TrkA) receptors, respectively, to stimulate phospholipase C (PLC) signalling pathways in primary afferent neurons. How these actions produce sensitization to physical or chemical stimuli has not been elucidated at the molecular level. Here, we show that bradykinin- or NGF-mediated potentiation of thermal sensitivity in vivo requires expression of VR1, a heat-activated ion channel on sensory neurons. Diminution of plasma membrane phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) levels through antibody sequestration or PLC-mediated hydrolysis mimics the potentiating effects of bradykinin or NGF at the cellular level. Moreover, recruitment of PLC-γ to TrkA is essential for NGF-mediated potentiation of channel activity, and biochemical studies suggest that VR1 associates with this complex. These studies delineate a biochemical mechanism through which bradykinin and NGF produce hypersensitivity and might explain how the activation of PLC signalling systems regulates other members of the TRP channel family.


Journal of Biological Chemistry | 1997

TRANCE Is a Novel Ligand of the Tumor Necrosis Factor Receptor Family That Activates c-Jun N-terminal Kinase in T Cells*

Brian Wong; Jaerang Rho; Joseph R. Arron; Elizabeth A. Robinson; Jason R. Orlinick; Moses V. Chao; Sergey Kalachikov; Eftihia Cayani; Frederick S. Bartlett; Wayne N. Frankel; Soo Young Lee; Yongwon Choi

A novel member of the tumor necrosis factor (TNF) cytokine family, designated TRANCE, was cloned during a search for apoptosis-regulatory genes using a somatic cell genetic approach in T cell hybridomas. The TRANCE gene encodes a type II membrane protein of 316 amino acids with a predicted molecular mass of 35 kDa. Its extracellular domain is most closely related to TRAIL, FasL, and TNF. TRANCE is an immediate early gene up-regulated by TCR stimulation and is controlled by calcineurin-regulated transcription factors. TRANCE is most highly expressed in thymus and lymph nodes but not in nonlymphoid tissues and is abundantly expressed in T cells but not in B cells. Cross-hybridization of the mouse cDNA to a human thymus library yielded the human homolog, which encodes a protein 83% identical to the mouse ectodomain. HumanTRANCE was mapped to chromosome 13q14 while mouseTRANCE was located to the portion of mouse chromosome 14 syntenic with human chromosome 13q14. A recombinant soluble form of TRANCE composed of the entire ectodomain induced c-Jun N-terminal kinase (JNK) activation in T cells but not in splenic B cells or in bone marrow-derived dendritic cells. These results suggest a role for this TNF-related ligand in the regulation of the T cell-dependent immune response.


Cell | 1986

Expression and structure of the human NGF receptor

Daniel J. Johnson; A. A. Lanahan; C.Randy Buck; Amita Sehgal; Claudia Morgan; Eric H. Mercer; Mark Bothwell; Moses V. Chao

The nucleotide sequence for the human nerve growth factor (NGF) receptor has been determined. The 3.8 kb receptor mRNA encodes a 427 amino acid protein containing a 28 amino acid signal peptide, an extracellular domain containing four 40 amino acid repeats with six cysteine residues at conserved positions followed by a serine/threonine-rich region, a single transmembrane domain, and a 155 amino acid cytoplasmic domain. The sequence of the extracellular domain of the NGF receptor predicts a highly ordered structure containing a negatively charged region that may serve as the ligand-binding site. This domain is conserved through evolution. Transfection of a full-length cDNA in mouse fibroblasts results in stable expression of NGF receptors that are recognized by monoclonal antibodies to the human NGF receptor and that bind [125I]NGF.


Trends in Neurosciences | 1995

p75 and Trk: A two-receptor system

Moses V. Chao; Barbara L. Hempstead

The neurotrophin family of survival factors is distinguished by a unique receptor-signaling system that is composed of two transmembrane receptor proteins. Nerve growth factor (NGF), brain-derived neurotrophic factor, neurotrophin-3 (NT-3) and NT-4/5 share similar protein structures and biological functions and interact with two different types of cell-surface proteins, the Trk family of receptor tyrosine kinases, and the p75, or low-affinity neurotrophin receptor. An important question is whether a dual receptor system is necessary for neurotrophin action. Evidence indicates that co-expression of the two genes for the p75 receptor and the Trk NGF receptor can potentially lead to greater responsiveness to NGF, and suggests additional levels of regulation for the family of neurotrophin factors.


Nature Medicine | 2009

Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease

Alan H. Nagahara; David A. Merrill; Giovanni Coppola; Shingo Tsukada; Brock E. Schroeder; Gideon M. Shaked; Ling Wang; Armin Blesch; Albert H. Kim; James M. Conner; Edward Rockenstein; Moses V. Chao; Edward H. Koo; Daniel H. Geschwind; Eliezer Masliah; Andrea A. Chiba; Mark H. Tuszynski

Profound neuronal dysfunction in the entorhinal cortex contributes to early loss of short-term memory in Alzheimers disease. Here we show broad neuroprotective effects of entorhinal brain-derived neurotrophic factor (BDNF) administration in several animal models of Alzheimers disease, with extension of therapeutic benefits into the degenerating hippocampus. In amyloid-transgenic mice, BDNF gene delivery, when administered after disease onset, reverses synapse loss, partially normalizes aberrant gene expression, improves cell signaling and restores learning and memory. These outcomes occur independently of effects on amyloid plaque load. In aged rats, BDNF infusion reverses cognitive decline, improves age-related perturbations in gene expression and restores cell signaling. In adult rats and primates, BDNF prevents lesion-induced death of entorhinal cortical neurons. In aged primates, BDNF reverses neuronal atrophy and ameliorates age-related cognitive impairment. Collectively, these findings indicate that BDNF exerts substantial protective effects on crucial neuronal circuitry involved in Alzheimers disease, acting through amyloid-independent mechanisms. BDNF therapeutic delivery merits exploration as a potential therapy for Alzheimers disease.


Molecular and Cellular Biology | 2001

Akt Phosphorylates and Negatively Regulates Apoptosis Signal-Regulating Kinase 1

Albert H. Kim; Gus Khursigara; Xuan Sun; Thomas F. Franke; Moses V. Chao

ABSTRACT The Akt family of serine/threonine-directed kinases promotes cellular survival in part by phosphorylating and inhibiting death-inducing proteins. Here we describe a novel functional interaction between Akt and apoptosis signal-regulating kinase 1 (ASK1), a mitogen-activated protein kinase kinase kinase. Akt decreased ASK1 kinase activity stimulated by both oxidative stress and overexpression in 293 cells by phosphorylating a consensus Akt site at serine 83 of ASK1. Activation of the phosphoinositide 3-kinase (PI3-K)/Akt pathway also inhibited the serum deprivation-induced activity of endogenous ASK1 in L929 cells. An association between Akt and ASK1 was detected in cells by coimmunoprecipitation. Phosphorylation by Akt inhibited ASK1-mediated c-Jun N-terminal kinase and activating transcription factor 2 activities in intact cells. Finally, activation of the PI3-K/Akt pathway reduced apoptosis induced by ASK1 in a manner dependent on phosphorylation of serine 83 of ASK1. These results provide the first direct link between Akt and the family of stress-activated kinases.


Neuron | 2005

Neuregulin-1 Type III Determines the Ensheathment Fate of Axons

Carla Taveggia; George Zanazzi; Ashley Petrylak; Hiroko Yano; Jack Rosenbluth; Steven Einheber; Xiaorong Xu; Raymond M. Esper; Jeffrey A. Loeb; Peter Shrager; Moses V. Chao; Douglas L. Falls; Lorna W. Role; James L. Salzer

The signals that determine whether axons are ensheathed or myelinated by Schwann cells have long been elusive. We now report that threshold levels of neuregulin-1 (NRG1) type III on axons determine their ensheathment fate. Ensheathed axons express low levels whereas myelinated fibers express high levels of NRG1 type III. Sensory neurons from NRG1 type III deficient mice are poorly ensheathed and fail to myelinate; lentiviral-mediated expression of NRG1 type III rescues these defects. Expression also converts the normally unmyelinated axons of sympathetic neurons to myelination. Nerve fibers of mice haploinsufficient for NRG1 type III are disproportionately unmyelinated, aberrantly ensheathed, and hypomyelinated, with reduced conduction velocities. Type III is the sole NRG1 isoform retained at the axon surface and activates PI 3-kinase, which is required for Schwann cell myelination. These results indicate that levels of NRG1 type III, independent of axon diameter, provide a key instructive signal that determines the ensheathment fate of axons.


Clinical Science | 2006

Neurotrophin signalling in health and disease

Moses V. Chao; Rithwick Rajagopal; Francis S. Lee

Neurotrophins are a unique family of polypeptide growth factors that influence the proliferation, differentiation, survival and death of neuronal and non-neuronal cells. They are essential for the health and well-being of the nervous system. NGF (nerve growth factor), BDNF (brain-derived neurotrophic factor), NT-3 (neurotrophin-3) and NT-4 (neurotrophin-4) also mediate additional higher-order activities, such as learning, memory and behaviour, in addition to their established functions for cell survival. The effects of neurotrophins depend upon their levels of availability, their affinity of binding to transmembrane receptors and the downstream signalling cascades that are stimulated after receptor activation. Alterations in neurotrophin levels have been implicated in neurodegenerative disorders, such as Alzheimers disease and Huntingtons disease, as well as psychiatric disorders, including depression and substance abuse. Difficulties in administering trophic factors have led to the consideration of using small molecules, such as GPCR (G-protein-coupled receptor) ligands, which can participate in transactivation events. In this review, we consider the signalling pathways activated by neurotrophins in both health and disease states.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Activation of Trk neurotrophin receptors in the absence of neurotrophins

Francis S. Lee; Moses V. Chao

Neurotrophins regulate neuronal cell survival and synaptic plasticity through activation of Trk receptor tyrosine kinases. Binding of neurotrophins to Trk receptors results in receptor autophosphorylation and downstream phosphorylation cascades. Here, we describe an approach to use small molecule agonists to transactivate Trk neurotrophin receptors. Activation of TrkA receptors in PC12 cells and TrkB in hippocampal neurons was observed after treatment with adenosine, a neuromodulator that acts through G protein-coupled receptors. These effects were reproduced by using the adenosine agonist CGS 21680 and were counteracted with the antagonist ZM 241385, indicating that this transactivation event by adenosine involves adenosine 2A receptors. The increase in Trk activity could be inhibited by the use of the Src family-specific inhibitor, PP1, or K252a, an inhibitor of Trk receptors. In contrast to other G protein-coupled receptor transactivation events, adenosine used Trk receptor signaling with a longer time course. Moreover, adenosine activated phosphatidylinositol 3-kinase/Akt through a Trk-dependent mechanism that resulted in increased cell survival after nerve growth factor or brain-derived neurotrophic factor withdrawal. Therefore, adenosine acting through the A2A receptors exerts a trophic effect through the engagement of Trk receptors. These results provide an explanation for neuroprotective actions of adenosine through a unique signaling mechanism and raise the possibility that small molecules may be used to elicit neurotrophic effects for the treatment of neurodegenerative diseases.

Collaboration


Dive into the Moses V. Chao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Carlos Arévalo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Patrizia Casaccia-Bonnefil

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert H. Kim

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge