Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Leuchs is active.

Publication


Featured researches published by Barbara Leuchs.


Journal of Virology | 2006

Adeno-Associated Virus Type 2 Capsids with Externalized VP1/VP2 Trafficking Domains Are Generated prior to Passage through the Cytoplasm and Are Maintained until Uncoating Occurs in the Nucleus

Florian Sonntag; Svenja Bleker; Barbara Leuchs; Roger Fischer; Jürgen A. Kleinschmidt

ABSTRACT Common features of parvovirus capsids are open pores at the fivefold symmetry axes that traverse the virion shell. Upon limited heat treatment in vitro, the pores can function as portals to externalize VP1/VP2 protein N-terminal sequences which harbor infection-relevant functional domains, such as a phospholipase A2 catalytic domain. Here we show that adeno-associated virus type 2 (AAV2) also exposes its VP1/VP2 N termini in vivo during infection, presumably in the endosomal compartment. This conformational change is influenced by treatment with lysosomotropic reagents. While incubation of cells with bafilomycin A1 reduced exposure of VP1/VP2 N termini, incubation with chloroquine stimulated externalization transiently. N-terminally located basic amino acid clusters with nuclear localization activity also become exposed in this process and are accessible on the virus capsid when it enters the cytoplasm. This is an obligatory step in AAV2 infection. However, a direct role of these sequences in nuclear translocation of viral capsids could not be determined by microinjection of wild-type or mutant viruses. This suggests that further modifications of the capsid have to take place in a precytoplasmic entry step that prepares the virus for nuclear entry. Microinjection of several capsid-specific antibodies into the cell nucleus blocked AAV2 infection completely, supporting the conclusion that AAV2 capsids bring the infectious genome into the nucleus.


Science Translational Medicine | 2011

Cardiac AAV9-S100A1 Gene Therapy Rescues Post-Ischemic Heart Failure in a Preclinical Large Animal Model

Sven T. Pleger; Changguang Shan; Jan Ksienzyk; Raffi Bekeredjian; Peter Boekstegers; Rabea Hinkel; Stefanie Schinkel; Barbara Leuchs; Jochen Ludwig; Gang Qiu; Christophe Weber; Philip Raake; Walter J. Koch; Hugo A. Katus; Oliver Müller; Patrick Most

A protein that regulates cellular calcium, delivered percutaneously to the heart by gene therapy, improves cardiac function in pigs with heart failure and may also be effective in humans. Paving the Way for a Gene Therapy Trial for Heart Failure Heart failure, also known as congestive heart failure, results when, for any number of reasons, the heart no longer pumps enough blood to keep organs perfused and oxygenated. Common in the Western world, heart failure’s first-line treatment is diuretics, which help to remove the excess fluid that pools in the body during heart failure, and β-adrenergic receptor–blocking drugs to interfere with the deleterious effects of the excess catecholamines that accompany this disease. These treatments are effective but do not restore normal heart function; more than half of patients with heart failure die within 5 years. The authors of Pleger et al. now present evidence that a gene therapy approach to augmenting the failing heart’s damaged ability to handle intracellular calcium produces marked improvements in heart function in pigs with heart failure. These results provide enough evidence, the authors say, to justify a clinical trial to see whether this approach could improve patient’s quality of life and survival when added to current treatments. The investigators injected an adenovirus gene therapy vector (AAV9) carrying the gene for S100A1 into pigs experiencing heart failure, induced by the experimental occlusion of a coronary artery. They chose to deliver S100A1 to the failing heart because this calcium-binding protein becomes depleted as the heart fails and is needed for proper regulation of the calcium dynamics within myocardial cells. Two weeks after infarction, the vector (under control of a cardiac-specific promoter) was delivered to non-infarcted regions of the heart (which would eventually fail without treatment). Twelve weeks later, S100A1 protein expression increased and heart function improved. By several measures, calcium handling within the cardiomyocytes was improved, as were markers of mitochondrial energy production. The authors saw no toxic effects of the therapy and verified the cardiac-specific expression of the vector. Although similar gene therapy tests were shown previously to be effective in mice, a test in a large animal model was especially important to verify that this approach is likely to be safe and effective in patients. The volume of successfully transduced tissue in a pig heart is similar to that required for humans. Unlike the rodent, the pig’s heart rate, sarcomeric proteins, and cardiomyocyte calcium handling are all similar to human, and therapeutic vector delivery through a percutaneous catheter, which will be required in patients, could be mimicked in pigs. If the value of this therapy is confirmed in clinical trials, it would be available for patients already suffering heart failure. It would likely prove most useful as an adjunct therapy to currently existing drugs where it could augment the strength of the heart’s contraction. As a prerequisite for clinical application, we determined the long-term therapeutic effectiveness and safety of adeno-associated virus (AAV)–S100A1 gene therapy in a preclinical large animal model of heart failure. S100A1, a positive inotropic regulator of myocardial contractility, becomes depleted in failing cardiomyocytes in humans and animals, and myocardial-targeted S100A1 gene transfer rescues cardiac contractile function by restoring sarcoplasmic reticulum calcium (Ca2+) handling in acutely and chronically failing hearts in small animal models. We induced heart failure in domestic pigs by balloon occlusion of the left circumflex coronary artery, resulting in myocardial infarction. After 2 weeks, when the pigs displayed significant left ventricular contractile dysfunction, we administered, by retrograde coronary venous delivery, AAV serotype 9 (AAV9)–S100A1 to the left ventricular, non-infarcted myocardium. AAV9-luciferase and saline treatment served as control. At 14 weeks, both control groups showed significantly decreased myocardial S100A1 protein expression along with progressive deterioration of cardiac performance and left ventricular remodeling. AAV9-S100A1 treatment prevented and reversed these functional and structural changes by restoring cardiac S100A1 protein levels. S100A1 treatment normalized cardiomyocyte Ca2+ cycling, sarcoplasmic reticulum calcium handling, and energy homeostasis. Transgene expression was restricted to cardiac tissue, and extracardiac organ function was uncompromised. This translational study shows the preclinical feasibility of long-term therapeutic effectiveness of and a favorable safety profile for cardiac AAV9-S100A1 gene therapy in a preclinical model of heart failure. Our results present a strong rationale for a clinical trial of S100A1 gene therapy for human heart failure that could potentially complement current strategies to treat end-stage heart failure.


BMC Cancer | 2012

Phase I/IIa study of intratumoral/intracerebral or intravenous/intracerebral administration of Parvovirus H-1 (ParvOryx) in patients with progressive primary or recurrent glioblastoma multiforme: ParvOryx01 protocol

Karsten Geletneky; Johannes Huesing; Jean Rommelaere; Joerg R. Schlehofer; Barbara Leuchs; Michael Dahm; Ottheinz Krebs; Magnus von Knebel Doeberitz; Bernard Huber; Jacek Hajda

BackgroundThe treatment of patients with malignant brain tumors remains a major oncological problem. The median survival of patients with glioblastoma multiforme (GBM), the most malignant type, is only 15 months after initial diagnosis and even less after tumor recurrence. Improvements of standard treatment including surgery and radio-chemotherapy have not lead to major improvements. Therefore, alternative therapeutics such as oncolytic viruses that specifically target and destroy cancer cells are under investigation. Preclinical data of oncolytic parvovirus H-1 (H-1PV) infection of glioma cells demonstrated strong cytotoxic and oncosuppressing effects, leading to a phase I/IIa trial of H-1PV in patients with recurrent GBM (ParvOryx01). ParvOryx01 is the first trial with a replication competent oncolytic virus in Germany.MethodsParvOryx01 is an open, non-controlled, two groups, intra-group dose escalation, single center, phase I/IIa trial. 18 patients with recurrent GBM will be treated in 2 groups of 9 patients each. Treatment group 1 will first receive H-1PV by intratumoral injection and second by administration into the walls of the tumor cavity during tumor resection. In treatment group 2 the virus will initially be injected intravenously and afterwards, identical to group 1, into the surrounding brain tissue during tumor removal. Main eligibility criteria are: age of 18 years, unifocal recurrent GBM, amenable to complete or subtotal resection. Dose escalation will be based on the Continual Reassessment Method. The primary objective of the trial is local and systemic safety and tolerability and to determine the maximum tolerated dose (MTD). Secondary objectives are proof of concept (PoC) and Progression-free Survival (PFS) up to 6 months.DiscussionThis is the first trial with H-1PV in patients with recurrent GBM. The risks for the participants appear well predictable and justified. Furthermore, ParvOryx01 will be the first assessment of combined intratumoral and intravenous application of an oncolytic virus. Due to its study design the trial will not only generate data on the local effect of H-1PV but it will also investigate the penetration of H-1PV into the tumor after systemic delivery and obtain safety data from systemic delivery possibly supporting clinical trials with H-1PV in other, non-CNS malignancies.Trial registrationClinicalTrials.gov Identifier: NCT01301430


Clinical Cancer Research | 2009

Improvement of Gemcitabine-Based Therapy of Pancreatic Carcinoma by Means of Oncolytic Parvovirus H-1PV

Assia L. Angelova; Marc Aprahamian; Svitlana P. Grekova; Amor Hajri; Barbara Leuchs; Nathalia A. Giese; Christiane Dinsart; Alexia Herrmann; Ginette Balboni; Jean Rommelaere; Zahari Raykov

Pancreatic carcinoma is a gastrointestinal malignancy with poor prognosis. Treatment with gemcitabine, the most potent chemotherapeutic against this cancer up to date, is not curative, and resistance may appear. Complementary treatment with an oncolytic virus, such as the rat parvovirus H-1PV, which is infectious but nonpathogenic in humans, emerges as an innovative option. Purpose: To prove that combining gemcitabine and H-1PV in a model of pancreatic carcinoma may reduce the dosage of the toxic drug and/or improve the overall anticancer effect. Experimental Design: Pancreatic tumors were implanted orthotopically in Lewis rats or subcutaneously in nude mice and treated with gemcitabine, H-1PV, or both according to different regimens. Tumor size was monitored by micro-computed tomography, whereas bone marrow, liver, and kidney functions were monitored by measuring clinically relevant markers. Human pancreatic cell lines and gemcitabine-resistant derivatives were tested in vitro for sensitivity to H-1PV infection with or without gemcitabine. Results:In vitro studies proved that combining gemcitabine with H-1PV resulted in synergistic cytotoxic effects and achieved an up to 15-fold reduction in the 50% effective concentration of the drug, with drug-resistant cells remaining sensitive to virus killing. Toxicologic screening showed that H-1PV had an excellent safety profile when applied alone or in combination with gemcitabine. The benefits of applying H-1PV as a second-line treatment after gemcitabine included reduction of tumor growth, prolonged survival of the animals, and absence of metastases on CT-scans. Conclusion: In addition to their potential use as monotherapy for pancreatic cancer, parvoviruses can be best combined with gemcitabine in a two-step protocol.


Human Gene Therapy | 2010

Characterization of a Recombinant Adeno-Associated Virus Type 2 Reference Standard Material

Martin Lock; Susan P. McGorray; Alberto Auricchio; Eduard Ayuso; E. Jeffrey Beecham; Véronique Blouin-Tavel; Fatima Bosch; Mahuya Bose; Barry J. Byrne; Tina Caton; John A. Chiorini; Abdelwahed Chtarto; K. Reed Clark; Thomas J. Conlon; Christophe Darmon; Monica Doria; Anne M. Douar; Terence R. Flotte; Joyce D. Francis; Achille François; Mauro Giacca; Michael T. Korn; Irina Korytov; Xavier León; Barbara Leuchs; Gabriele Lux; Catherine Melas; Hiroaki Mizukami; Philippe Moullier; Marcus Müller

A recombinant adeno-associated virus serotype 2 Reference Standard Material (rAAV2 RSM) has been produced and characterized with the purpose of providing a reference standard for particle titer, vector genome titer, and infectious titer for AAV2 gene transfer vectors. Production and purification of the reference material were carried out by helper virus-free transient transfection and chromatographic purification. The purified bulk material was vialed, confirmed negative for microbial contamination, and then distributed for characterization along with standard assay protocols and assay reagents to 16 laboratories worldwide. Using statistical transformation and modeling of the raw data, mean titers and confidence intervals were determined for capsid particles ({X}, 9.18 x 10¹¹ particles/ml; 95% confidence interval [CI], 7.89 x 10¹¹ to 1.05 x 10¹² particles/ml), vector genomes ({X}, 3.28 x 10¹⁰ vector genomes/ml; 95% CI, 2.70 x 10¹⁰ to 4.75 x 10¹⁰ vector genomes/ml), transducing units ({X}, 5.09 x 10⁸ transducing units/ml; 95% CI, 2.00 x 10⁸ to 9.60 x 10⁸ transducing units/ml), and infectious units ({X}, 4.37 x 10⁹ TCID₅₀ IU/ml; 95% CI, 2.06 x 10⁹ to 9.26 x 10⁹ TCID₅₀ IU/ml). Further analysis confirmed the identity of the reference material as AAV2 and the purity relative to nonvector proteins as greater than 94%. One obvious trend in the quantitative data was the degree of variation between institutions for each assay despite the relatively tight correlation of assay results within an institution. This relatively poor degree of interlaboratory precision and accuracy was apparent even though attempts were made to standardize the assays by providing detailed protocols and common reagents. This is the first time that such variation between laboratories has been thoroughly documented and the findings emphasize the need in the field for universal reference standards. The rAAV2 RSM has been deposited with the American Type Culture Collection and is available to the scientific community to calibrate laboratory-specific internal titer standards. Anticipated uses of the rAAV2 RSM are discussed.


Journal of Virology | 2006

Intranasal vaccination with recombinant adeno-associated virus type 5 against human papillomavirus type 16 L1.

Dirk Kuck; Tobias Lau; Barbara Leuchs; Andrea Kern; Martin Müller; Lutz Gissmann; Jürgen A. Kleinschmidt

ABSTRACT Adeno-associated viruses (AAV) have been developed and evaluated as recombinant vectors for gene therapy in many preclinical studies, as well as in clinical trials. However, only a few approaches have used recombinant AAV (rAAV) to deliver vaccine antigens. We generated an rAAV encoding the major capsid protein L1 (L1h) from the human papillomavirus type 16 (HPV16), aiming to develop a prophylactic vaccine against HPV16 infections, which are the major cause of cervical cancer in women worldwide. A single dose of rAAV5 L1h administered intranasally was sufficient to induce high titers of L1-specific serum antibodies, as well as mucosal antibodies in vaginal washes. Seroconversion was maintained for at least 1 year. In addition, a cellular immune response was still detectable 60 weeks after immunization. Furthermore, lyophilized rAAV5 L1h successfully evoked a systemic and mucosal immune response in mice. These data clearly show the efficacy of a single-dose intranasal immunization against HPV16 based on the recombinant rAAV5L1h vector without the need of an adjuvant.


Molecular therapy. Nucleic acids | 2013

Focal Delivery of AAV2/1-transgenes Into the Rat Brain by Localized Ultrasound-induced BBB Opening

Angelika Alonso; Eileen Reinz; Barbara Leuchs; Jürgen A. Kleinschmidt; Marc Fatar; Bart Geers; Ine Lentacker; Michael G. Hennerici; Stefaan C. De Smedt; Stephen Meairs

Delivery of drugs and macromolecules to the central nervous system (CNS) is hindered by the blood–brain barrier (BBB). Several approaches have been used to overcome this hindrance to facilitate the treatment of various CNS diseases. We now present results showing that chimeric adeno-associated virus 2/1 (AAV2/1) particles containing the coding region for the LacZ gene are efficiently delivered into the rat brain upon intravenous (IV) administration after BBB opening by focused ultrasound in the presence of vascular acoustic resonators. We show that the transgene is correctly and efficiently expressed in cells located in the neighborhood of the insonated focus, especially in the vicinity of small vessels and capillaries. Histochemical LacZ staining allows the identification of large amounts of cells expressing the enzymatically active protein. Using double immunofluorescence (IF) with antibodies against tubulinIII and bacterial LacZ, we identified these cells to be mostly neurons. A small proportion of the transduced cells was recognized as glial cells, reacting positive in the IF with antibodies against astrocytic markers. These results demonstrate that our approach allows a very specific, localized, and efficient expression of intravenously administered transgenes in the brain of rats upon ultrasound-induced BBB opening.


International Journal of Cancer | 2008

Arming parvoviruses with CpG motifs to improve their oncosuppressive capacity

Zahari Raykov; Svetlana Grekova; Barbara Leuchs; Marc Aprahamian; Jean Rommelaere

Oncolytic viruses represent novel tools for cancer treatment. Besides specifically killing cancer cells (oncolysis), these agents also provide danger signals, prompting the immune system to eliminate virus‐infected tumours. As a consequence of oncolytic events, the innate and adaptive immune systems gain access to tumour antigens, which result in cross‐priming and vaccination effects. Here the aim was to see whether we could enhance this adjuvant capacity by incorporating immunostimulatory CpG motifs into the single‐stranded genome of an oncolytic parvovirus (H‐1PV). We engineered 2 CpG‐enriched H‐1PV variants (JabCG1 and JabCG2), preserving both the replication competence and the oncolytic features of the parental virus. In keeping with their increased CpG content, the JabCG1 and JabCG2 genomes proved in vitro to be more potent triggers of TLR‐9‐mediated signalling than wild‐type H‐1PV DNA. Antitumour activity was evaluated in a rat model of MH3924A hepatoma lung metastases, where an infection with parental or modified viruses served as an ex vivo adjuvant to a subcutaneously administered autologous cell vaccine. In this setup, which excludes direct oncolytic effects on metastases, the JabCG2 vector displayed enhanced immunogenicity, inducing markers of cellular immunity (IFNγ) and dendritic cell activation (CD80, CD86) in mediastinal (tumour‐draining) lymph nodes. This led to a significantly reduced metastatic rate (50%) as compared to other vaccination schedules (H‐1PV‐, JabCG1‐, JabGC‐ or mock‐treated cells). The data provide proof of principle that increasing the number of immunostimulatory CpG motifs within oncolytic viruses makes it possible to improve their overall anticancer effect by inducing antitumour vaccination.


Cardiovascular Research | 2014

Rapid and highly efficient inducible cardiac gene knockout in adult mice using AAV- mediated expression of Cre recombinase

Stanislas Werfel; Andreas Jungmann; Lorenz H. Lehmann; Jan Ksienzyk; Raffi Bekeredjian; Ziya Kaya; Barbara Leuchs; Alfred Nordheim; Johannes Backs; Stefan Engelhardt; Hugo A. Katus; Oliver J. Müller

AIMS Inducible gene targeting in mice using the Cre/LoxP system has become a valuable tool to analyse the roles of specific genes in the adult heart. However, the commonly used Myh6-MerCreMer system requires time-consuming breeding schedules and is potentially associated with cardiac side effects, which may result in transient cardiac dysfunction. The aim of our study was to establish a rapid and simple system for cardiac gene inactivation in conditional knockout mice by gene transfer of a Cre recombinase gene using adeno-associated viral vectors of serotype 9 (AAV9). METHODS AND RESULTS AAV9 vectors expressing Cre under the control of a human cardiac troponin T promoter (AAV-TnT-Cre) enabled a highly efficient Cre/LoxP switching in cardiomyocytes 2 weeks after injection into 5- to 6-week-old ROSA26-LacZ reporter mice. Recombination efficiency was at least as high as observed with the Myh6-MerCreMer system. No adverse side effects were detected upon application of AAV-TnT-Cre. As proof of principle, we studied AAV-TnT-Cre in a conditional knockout model (Srf-flex1 mice) to deplete the myocardium of the transcription factor serum response factor (SRF). Four weeks after AAV-TnT-Cre injection, a strong decrease in the cardiac expression of SRF mRNA and protein was observed. Furthermore, mice developed a severe cardiac dysfunction with increased interstitial fibrosis in accordance with the central role of SRF for the expression of contractile and calcium trafficking proteins in the heart. CONCLUSIONS AAV9-mediated expression of Cre is a promising approach for rapid and efficient conditional cardiac gene knockout in adult mice.


International Journal of Cancer | 2010

Parvovirus H1 selectively induces cytotoxic effects on human neuroblastoma cells

Jeannine Lacroix; Barbara Leuchs; Junwei Li; Georgi Hristov; Hedwig E. Deubzer; Andreas E. Kulozik; Jean Rommelaere; Jörg R. Schlehofer; Olaf Witt

Despite multimodal therapeutic concepts, advanced localized and high‐risk neuroblastoma remains a therapeutic challenge with a long‐term survival rate below 50%. Consequently, new modalities for the treatment of neuroblastoma, e.g., oncolytic virotherapy are urgently required. H‐1PV is a rodent parvovirus devoid of relevant pathogenic effects in infected adult animals. In contrast, the virus has oncolytic properties and is particularly cytotoxic for transformed or tumor‐derived cells of various species including cells of human origin. Here, a preclinical in vitro assessment of the application of oncolytic H‐1PV for the treatment of neuroblastoma cells was performed. Infection efficiency, viral replication and lytic activity of H‐1PV were analyzed in 11 neuroblastoma cell lines with different MYCN status. Oncoselectivity of the virus was confirmed by the infection of short term cultures of nonmalignant infant cells of different origin. In these nontransformed cells, no effect of H‐1PV on viability or morphology of the cells was observed. In contrast, a lytic infection was induced in all neuroblastoma cell lines examined at MOIs between 0.001 and 10 pfu/cell. H‐1PV actively replicated with virus titres increasing up to 5,000‐fold within 48–96 hr after infection. The lytic effect of H‐1PV was observed independent of MYCN oncogene amplification or differentiation status. Moreover, a significant G2‐arrest and induction of apoptosis could be demonstrated. Infection efficiency, rapid virus replication and exhaustive lytic effects on neuroblastoma cells together with the low toxicity of H‐1PV for nontransformed cells, render this parvovirus a promising candidate for oncolytic virotherapy of neuroblastoma.

Collaboration


Dive into the Barbara Leuchs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olaf Witt

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Antonio Marchini

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Assia L. Angelova

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R Josupeit

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Christiane Dinsart

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Monika Frank-Stöhr

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge