Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jürgen A. Kleinschmidt is active.

Publication


Featured researches published by Jürgen A. Kleinschmidt.


Nature Medicine | 1999

Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2.

Anne Girod; Martin Ried; Christiane Wobus; Harald Lahm; Kristin Leike; Jürgen A. Kleinschmidt; Gilbert Deleage; Michael Hallek

The human parvovirus adeno-associated virus type 2 (AAV2) has many features that make it attractive as a vector for gene therapy. However, the broad host range of AAV2 might represent a limitation for some applications in vivo, because recombinant AAV vector (rAAV)-mediated gene transfer would not be specific for the tissue of interest. This host range is determined by the binding of the AAV2 capsid to specific cellular receptors and/or co-receptors. The tropism of AAV2 might be changed by genetically introducing a ligand peptide into the viral capsid, thereby redirecting the binding of AAV2 to other cellular receptors. We generated six AAV2 capsid mutants by inserting a 14-amino-acid targeting peptide, L14, into six different putative loops of the AAV2 capsid protein identified by comparison with the known three-dimensional structure of canine parvovirus. All mutants were efficiently packaged. Three mutants expressed L14 on the capsid surface, and one efficiently infected wild-type AAV2-resistant cell lines that expressed the integrin receptor recognized by L14. The results demonstrate that the AAV2 capsid tolerates the insertion of a nonviral ligand sequence. This might open new perspectives for the design of targeted AAV2 vectors for human somatic gene therapy.


Nature Biotechnology | 2003

Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors.

Oliver Müller; Felix Kaul; Matthew D. Weitzman; Renata Pasqualini; Wadih Arap; Jürgen A. Kleinschmidt; Martin Trepel

Characterizing the molecular diversity of the cell surface is critical for targeting gene therapy. Cell type–specific binding ligands can be used to target gene therapy vectors. However, targeting systems in which optimum eukaryotic vectors can be selected on the cells of interest are not available. Here, we introduce and validate a random adeno-associated virus (AAV) peptide library in which each virus particle displays a random peptide at the capsid surface. This library was generated in a three-step system that ensures encoding of displayed peptides by the packaged DNA. As proof-of-concept, we screened AAV-libraries on human coronary artery endothelial cells. We observed selection of particular peptide motifs. The selected peptides enhanced transduction in coronary endothelial cells but not in control nonendothelial cells. This vector targeting strategy has advantages over other combinatorial approaches such as phage display because selection occurs within the context of the capsid and may have a broad range of applications in biotechnology and medicine.


Journal of Virology | 2003

Identification of a Heparin-Binding Motif on Adeno-Associated Virus Type 2 Capsids

Andrea Kern; Kristin Schmidt; O. J. Müller; C. E. Wobus; K. Bettinger; C.-W. von der Lieth; Jason King; Jürgen A. Kleinschmidt

ABSTRACT Infection of cells with adeno-associated virus (AAV) type 2 (AAV-2) is mediated by binding to heparan sulfate proteoglycan and can be competed by heparin. Mutational analysis of AAV-2 capsid proteins showed that a group of basic amino acids (arginines 484, 487, 585, and 588 and lysine 532) contribute to heparin and HeLa cell binding. These amino acids are positioned in three clusters at the threefold spike region of the AAV-2 capsid. According to the recently resolved atomic structure for AAV-2, arginines 484 and 487 and lysine 532 on one site and arginines 585 and 588 on the other site belong to different capsid protein subunits. These data suggest that the formation of the heparin-binding motifs depends on the correct assembly of VP trimers or even of capsids. In contrast, arginine 475, which also strongly reduces heparin binding as well as viral infectivity upon mutation to alanine, is located inside the capsid structure at the border of adjacent VP subunits and most likely influences heparin binding indirectly by disturbing correct subunit assembly. Computer simulation of heparin docking to the AAV-2 capsid suggests that heparin associates with the three basic clusters along a channel-like cavity flanked by the basic amino acids. With few exceptions, mutant infectivities correlated with their heparin- and cell-binding properties. The tissue distribution in mice of recombinant AAV-2 mutated in R484 and R585 indicated markedly reduced infection of the liver, compared to infection with wild-type recombinant AAV, but continued infection of the heart. These results suggest that although heparin binding influences the infectivity of AAV-2, it seems not to be necessary.


Nature Biotechnology | 1999

Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab'γ) 2 antibody

Jeffrey S. Bartlett; Jürgen A. Kleinschmidt; Richard C. Boucher; R. Jude Samulski

We have developed a system for the targeted delivery of adeno–associated virus (AAV) vectors. Targeting is achieved via a bispecific F(ab´)2 antibody that mediates a novel interaction between the AAV vector and a specific cell surface receptor expressed on human megakaryocytes. Targeted AAV vectors were able to transduce megakaryocyte cell lines, DAMI and MO7e, which were nonpermissive for normal AAV infection, 70–fold above background and at levels equivalent to permissive K562 cells. Transduction was shown to occur through the specific interaction of the AAV vector–bispecific F(ab´)2 complex and cell–associated targeting receptor. Importantly, targeting appeared both selective and restrictive as the endogenous tropism of the AAV vector was significantly reduced. Binding and internalization through the alternative receptor did not alter subsequent steps (escape from endosomes, migration to nucleus, or uncoating) required to successfully transduce target cells. These results demonstrate that AAV vectors can be targeted to a specific cell population and that transduction can be achieved by circumventing the normal virus receptor.


Journal of Virology | 2000

Monoclonal Antibodies against the Adeno-Associated Virus Type 2 (AAV-2) Capsid: Epitope Mapping and Identification of Capsid Domains Involved in AAV-2–Cell Interaction and Neutralization of AAV-2 Infection

Christiane E. Wobus; Barbara Hügle-Dörr; Anne Girod; Gabriele Petersen; Michael Hallek; Jürgen A. Kleinschmidt

ABSTRACT The previously characterized monoclonal antibodies (MAbs) A1, A69, B1, and A20 are directed against assembled or nonassembled adeno-associated virus type 2 (AAV-2) capsid proteins (A. Wistuba, A. Kern, S. Weger, D. Grimm, and J. A. Kleinschmidt, J. Virol. 71:1341–1352, 1997). Here we describe the linear epitopes of A1, A69, and B1 which reside in VP1, VP2, and VP3, respectively, using gene fragment phage display library, peptide scan, and peptide competition experiments. In addition, MAbs A20, C24-B, C37-B, and D3 directed against conformational epitopes on AAV-2 capsids were characterized. Epitope sequences on the capsid surface were identified by enzyme-linked immunoabsorbent assay using AAV-2 mutants and AAV serotypes, peptide scan, and peptide competition experiments. A20 neutralizes infection following receptor attachment by binding an epitope formed during AAV-2 capsid assembly. The newly isolated antibodies C24-B and C37-B inhibit AAV-2 binding to cells, probably by recognizing a loop region involved in binding of AAV-2 to the cellular receptor. In contrast, binding of D3 to a loop near the predicted threefold spike does not neutralize AAV-2 infection. The identified antigenic regions on the AAV-2 capsid surface are discussed with respect to their possible roles in different steps of the viral life cycle.


The EMBO Journal | 2001

DNA helicase‐mediated packaging of adeno‐associated virus type 2 genomes into preformed capsids

Jason King; Ralf Dubielzig; Dirk Grimm; Jürgen A. Kleinschmidt

Helicases not only catalyse the disruption of hydrogen bonding between complementary regions of nucleic acids, but also move along nucleic acid strands in a polar fashion. Here we show that the Rep52 and Rep40 proteins of adeno‐associated virus type 2 (AAV‐2) are required to translocate capsid‐associated, single‐stranded DNA genomes into preformed empty AAV‐2 capsids, and that the DNA helicase function of Rep52/40 is essential for this process. Furthermore, DNase protection experiments suggest that insertion of AAV‐2 genomes proceeds from the 3′ end, which correlates with the 3′→5′ processivity demonstrated for the Rep52/40 helicase. A model is proposed in which capsid‐immobilized helicase complexes act as molecular motors to ‘pump’ single‐stranded DNA across the capsid boundary.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A viral assembly factor promotes AAV2 capsid formation in the nucleolus

Florian Sonntag; Kristin Schmidt; Jürgen A. Kleinschmidt

The volume available in icosahedral virus capsids limits the size of viral genomes. To overcome this limitation, viruses have evolved strategies to increase their coding capacity by using more than one ORF while keeping the genome length constant. The assembly of virus capsids requires the coordinated interaction of a large number of subunits to generate a highly ordered structure in which the viral genome can be enclosed. To understand this process, it is essential to know which viral and nonviral components are involved in the assembly reaction. Here, we show that the adeno-associated virus (AAV) encodes a protein required for capsid formation by means of a nested, alternative ORF of the cap gene. Translation is initiated at a nonconventional translation start site, resulting in the expression of a protein with a calculated molecular weight of 23 kDa. This protein, designated assembly-activating protein (AAP), is localized in the host cell nucleolus, where AAV capsid morphogenesis occurs. AAP targets newly synthesized capsid proteins to this organelle and in addition fulfils a function in the assembly reaction itself. Sequence analysis suggests that also all other species of the genus Dependovirus encode a homologous protein in their cap gene. The arrangement of different ORFs that encode capsid proteins and an assembly factor within the same mRNA facilitates a timely coordinated expression of the components involved in the assembly process.


PLOS Pathogens | 2009

Synthetic double-stranded RNAs are adjuvants for the induction of t helper 1 and humoral immune responses to human papillomavirus in rhesus macaques

Christiane Stahl-Hennig; Martin Eisenblätter; Edith Jasny; Tamara Rzehak; Klara Tenner-Racz; Christine Trumpfheller; Andres M. Salazar; Klaus Überla; Karen Nieto; Jürgen A. Kleinschmidt; Reiner Schulte; Lutz Gissmann; Martin Müller; Anna Sacher; Paul Racz; Ralph M. Steinman; Mariagrazia Uguccioni; Ralf Ignatius

Toll-like receptor (TLR) ligands are being considered as adjuvants for the induction of antigen-specific immune responses, as in the design of vaccines. Polyriboinosinic-polyribocytoidylic acid (poly I:C), a synthetic double-stranded RNA (dsRNA), is recognized by TLR3 and other intracellular receptors. Poly ICLC is a poly I:C analogue, which has been stabilized against the serum nucleases that are present in the plasma of primates. Poly I:C12U, another analogue, is less toxic but also less stable in vivo than poly I:C, and TLR3 is essential for its recognition. To study the effects of these compounds on the induction of protein-specific immune responses in an animal model relevant to humans, rhesus macaques were immunized subcutaneously (s.c.) with keyhole limpet hemocyanin (KLH) or human papillomavirus (HPV)16 capsomeres with or without dsRNA or a control adjuvant, the TLR9 ligand CpG-C. All dsRNA compounds served as adjuvants for KLH-specific cellular immune responses, with the highest proliferative responses being observed with 2 mg/animal poly ICLC (p = 0.002) or 6 mg/animal poly I:C12U (p = 0.001) when compared with immunization with KLH alone. Notably, poly ICLC—but not CpG-C given at the same dose—also helped to induce HPV16-specific Th1 immune responses while both adjuvants supported the induction of strong anti-HPV16 L1 antibody responses as determined by ELISA and neutralization assay. In contrast, control animals injected with HPV16 capsomeres alone did not develop substantial HPV16-specific immune responses. Injection of dsRNA led to increased numbers of cells producing the T cell–activating chemokines CXCL9 and CXCL10 as detected by in situ hybridization in draining lymph nodes 18 hours after injections, and to increased serum levels of CXCL10 (p = 0.01). This was paralleled by the reduced production of the homeostatic T cell–attracting chemokine CCL21. Thus, synthetic dsRNAs induce an innate chemokine response and act as adjuvants for virus-specific Th1 and humoral immune responses in nonhuman primates.


Journal of Virology | 2001

Enhancement of Capsid Gene Expression: Preparing the Human Papillomavirus Type 16 Major Structural Gene L1 for DNA Vaccination Purposes

Christoph Leder; Jürgen A. Kleinschmidt; Carsten Wiethe; Martin N. Muller

ABSTRACT Expression of the structural proteins L1 and L2 of the human papillomaviruses (HPV) is tightly regulated. As a consequence, attempts to express these prime-candidate genes for prophylactic vaccination against papillomavirus-associated diseases in mammalian cells by means of simple DNA transfections result in insufficient production of the viral antigens. Similarly, in vivo DNA vaccination using HPV L1 or L2 expression constructs produces only weak immune responses. In this study we demonstrate that transient expression of the HPV type 16 L1 and L2 proteins can be highly improved by changing the RNA coding sequence, resulting in the accumulation of significant amounts of virus-like particles in the nuclei of transfected cells. Data presented indicate that, in the case of L1, adaptation for codon usage accounts for the vast majority of the improvement in protein expression, whereas translation-independent posttranscriptional events contribute only to a minor degree. Finally, the adapted L1 genes demonstrate strongly increased immunogenicity in vivo compared to that of unmodified L1 genes.


Journal of Virology | 2006

Adeno-Associated Virus Type 2 Capsids with Externalized VP1/VP2 Trafficking Domains Are Generated prior to Passage through the Cytoplasm and Are Maintained until Uncoating Occurs in the Nucleus

Florian Sonntag; Svenja Bleker; Barbara Leuchs; Roger Fischer; Jürgen A. Kleinschmidt

ABSTRACT Common features of parvovirus capsids are open pores at the fivefold symmetry axes that traverse the virion shell. Upon limited heat treatment in vitro, the pores can function as portals to externalize VP1/VP2 protein N-terminal sequences which harbor infection-relevant functional domains, such as a phospholipase A2 catalytic domain. Here we show that adeno-associated virus type 2 (AAV2) also exposes its VP1/VP2 N termini in vivo during infection, presumably in the endosomal compartment. This conformational change is influenced by treatment with lysosomotropic reagents. While incubation of cells with bafilomycin A1 reduced exposure of VP1/VP2 N termini, incubation with chloroquine stimulated externalization transiently. N-terminally located basic amino acid clusters with nuclear localization activity also become exposed in this process and are accessible on the virus capsid when it enters the cytoplasm. This is an obligatory step in AAV2 infection. However, a direct role of these sequences in nuclear translocation of viral capsids could not be determined by microinjection of wild-type or mutant viruses. This suggests that further modifications of the capsid have to take place in a precytoplasmic entry step that prepares the virus for nuclear entry. Microinjection of several capsid-specific antibodies into the cell nucleus blocked AAV2 infection completely, supporting the conclusion that AAV2 capsids bring the infectious genome into the nucleus.

Collaboration


Dive into the Jürgen A. Kleinschmidt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Trepel

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Andrea Kern

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Martin Müller

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Barbara Leuchs

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Florian Sonntag

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Stephanie Laufs

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge