Barbara Leyman
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Leyman.
Plant Physiology | 2004
Nelson Avonce; Barbara Leyman; José Oscar Mascorro-Gallardo; Patrick Van Dijck; Johan M. Thevelein; Gabriel Iturriaga
In Arabidopsis (Arabidopsis thaliana), trehalose is present at almost undetectable levels, excluding its role as an osmoprotectant. Here, we report that overexpression of AtTPS1 in Arabidopsis using the 35S promoter led to a small increase in trehalose and trehalose-6-P levels. In spite of this, transgenic plants displayed a dehydration tolerance phenotype without any visible morphological alterations, except for delayed flowering. Moreover, seedlings overexpressing AtTPS1 exhibited glucose (Glc)- and abscisic acid (ABA)-insensitive phenotypes. Transgenic seedlings germinated on Glc were visibly larger with green well-expanded cotyledonary leaves and fully developed roots, in contrast with wild-type seedlings showing growth retardation and absence of photosynthetic tissue. An ABA dose-response experiment revealed a higher germination rate for transgenic plants overexpressing AtTPS1 showing insensitive germination kinetics at 2.5 μm ABA. Interestingly, germination in the presence of Glc did not trigger an increase in ABA content in plants overexpressing AtTPS1. Expression analysis by quantitative reverse transcription-PCR in transgenic plants showed up-regulation of the ABI4 and CAB1 genes. In the presence of Glc, CAB1 expression remained high, whereas ABI4, HXK1, and ApL3 levels were down-regulated in the AtTPS1-overexpressing lines. Analysis of AtTPS1 expression in HXK1-antisense or HXK1-sense transgenic lines suggests the possible involvement of AtTPS1 in the hexokinase-dependent Glc-signaling pathway. These data strongly suggest that AtTPS1 has a pivotal role in the regulation of Glc and ABA signaling during vegetative development.
Trends in Plant Science | 2001
Barbara Leyman; Patrick Van Dijck; Johan M. Thevelein
Trehalose accumulation has been documented in many organisms, such as bacteria and fungi, where it serves a storage and stress-protection role. Although conspicuously absent in most plants, trehalose biosynthesis genes were discovered recently in higher plants. We have uncovered a family of 11 TPS genes in Arabidopsis thaliana, one of which encodes a trehalose-6-phosphate (Tre6P) synthase, and a subfamily of which might encode the still elusive Tre6P phosphatases. A regulatory role in carbon metabolism is likely but might not be restricted to the TPS control of hexokinase activity as documented for yeast. Incompatibility between high trehalose levels and chaperone-assisted protein folding might be a reason why plants have evolved to accumulate some alternative stress-protection compounds to trehalose.
Plant Molecular Biology | 2007
Sazzad Karim; Henrik Aronsson; Henrik Ericson; Minna Pirhonen; Barbara Leyman; Björn Welin; Einar Mäntylä; E. Tapio Palva; Patrick Van Dijck; Kjell-Ove Holmström
Most organisms naturally accumulating trehalose upon stress produce the sugar in a two-step process by the action of the enzymes trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). Transgenic plants overexpressing TPS have shown enhanced drought tolerance in spite of minute accumulation of trehalose, amounts believed to be too small to provide a protective function. However, overproduction of TPS in plants has also been found combined with pleiotropic growth aberrations. This paper describes three successful strategies to circumvent such growth defects without loosing the improved stress tolerance. First, we introduced into tobacco a double construct carrying the genes TPS1 and TPS2 (encoding TPP) from Saccharomyces cerevisiae. Both genes are regulated by an Arabidopsis RuBisCO promoter from gene AtRbcS1A giving constitutive production of both enzymes. The second strategy involved stress-induced expression by fusing the coding region of ScTPS1 downstream of the drought-inducible ArabidopsisAtRAB18 promoter. In transgenic tobacco plants harbouring genetic constructs with either ScTPS1 alone, or with ScTPS1 and ScTPS2 combined, trehalose biosynthesis was turned on only when the plants experienced stress. The third strategy involved the use of AtRbcS1A promoter together with a transit peptide in front of the coding sequence of ScTPS1, which directed the enzyme to the chloroplasts. This paper confirms that the enhanced drought tolerance depends on unknown ameliorated water retention as the initial water status is the same in control and transgenic plants and demonstrates the influence of expression of heterologous trehalose biosynthesis genes on Arabidopsis root development.
The Plant Cell | 2002
Danny Geelen; Barbara Leyman; Henri Batoko; Gian Pietro Di Sansebastiano; Ian Moore; Michael R. Blatt
Syntaxins and other SNARE proteins are crucial for intracellular vesicle trafficking, fusion, and secretion. Previously, we isolated the syntaxin-related protein NtSyr1 (NtSyp121) from tobacco in a screen for abscisic acid–related signaling elements, demonstrating its role in determining the abscisic acid sensitivity of K+ and Cl− channels in stomatal guard cells. NtSyr1 is localized to the plasma membrane and is expressed normally throughout the plant, especially in root tissues, suggesting that it might contribute to cellular homeostasis as well as to signaling. To explore its functions in vivo further, we examined stably transformed lines of tobacco that expressed various constructs of NtSyr1, including the full-length protein and a truncated fragment, Sp2, corresponding to the cytosolic domain shown previously to be active in suppressing ion channel response to abscisic acid. Constitutively overexpressing NtSyr1 yielded uniformly high levels of protein (>10 times the wild-type levels) and was associated with a significant enhancement of root growth in seedlings but not with any obvious phenotype in mature, well-watered plants. Similar transformations with constructs encoding the Sp2 fragment of NtSyr1 showed altered leaf morphology but gave only low levels of Sp2 fragment, suggesting a strong selective pressure against plants expressing this protein. High expression of the Sp2 fragment was achieved in stable transformants under the control of a dexamethasone-inducible promoter. Sp2 expression was correlated positively with altered cellular and tissue morphology in leaves and roots and with a cessation of growth in seedlings. Overexpression of the full-length NtSyr1 protein rescued the wild-type phenotype, even in plants expressing high levels of the Sp2 fragment, supporting the idea that the Sp2 fragment interfered specifically with NtSyr1 function by competing with NtSyr1 for its binding partners. To explore NtSyr1 function in secretion, we used a green fluorescent protein (GFP)–based section assay. When a secreted GFP marker was coexpressed with Sp2 in tobacco leaves, GFP fluorescence was retained in cytosolic reticulate and punctate structures. In contrast, in plants coexpressing secreted GFP and NtSyr1 or secreted GFP alone, no GFP fluorescence accumulated within the cells. A new yellow fluorescent protein–based secretion marker was used to show that the punctate structures labeled in the presence of Sp2 colocalized with a Golgi marker. These structures were not labeled in the presence of a dominant Rab1 mutant that inhibited transport from the endoplasmic reticulum to the Golgi. We propose that NtSyr1 functions as an element in SNARE-mediated vesicle trafficking to the plasma membrane and is required for cellular growth and homeostasis.
Plant Cell and Environment | 2009
Matthew Ramon; Ive De Smet; Lies Vandesteene; Mirande Naudts; Barbara Leyman; Patrick Van Dijck; Filip Rolland; Tom Beeckman; Johan M. Thevelein
Trehalose metabolism has profound effects on plant growth and metabolism, but the mechanisms involved are unclear. In Arabidopsis, 21 putative trehalose biosynthesis genes are classified in three subfamilies based on their similarity with yeast TPS1 (encoding a trehalose-6-phosphate synthase, TPS) or TPS2 (encoding a trehalose-6-phosphate phosphatase, TPP). Although TPS1 (Class I) and TPPA and TPPB (Class III) proteins have established TPS and TPP activity, respectively, the function of the Class II proteins (AtTPS5-AtTPS11) remains elusive. A complete set of promoter-beta-glucurinidase/green fluorescent protein reporters demonstrates their remarkably differential tissue-specific expression and responsiveness to carbon availability and hormones. Heterologous expression in yeast furthermore suggests that none of the encoded enzymes displays significant TPS or TPP activity, consistent with a regulatory rather than metabolic function for this remarkable class of proteins.
Euphytica | 2005
André M. Almeida; Enrique Villalobos; Susana Araújo; Barbara Leyman; Patrick Van Dijck; Luís Alfaro-Cardoso; Pedro Fevereiro; José M. Torné; Dulce Santos
SummaryTrehalose (a non-reducing disaccharide) plays an important role in abiotic stress protection. It has been shown that using trehalose synthesis genes of bacterial origin, drought and salt tolerance could be achieved in several plants. A cassette harboring the AtTPS1 gene under the control of the CaMV35S promoter and the Bialaphos resistance gene was inserted in the binary plasmid vector pGreen0229 and used for Agrobacterium-mediated transformation of tobacco (Nicotiana tabacum). T0 plants obtained were analyzed by PCR for the presence of AtTPS1 gene. Thirty lines were positive and seeds were germinated on media with 6 mg/l PPT to obtain T1 plants that were grown in the greenhouse to obtain T2 seeds that were germinated on selective media. Lines which seeds showed a 100 % survival rate were considered homozygous transgenic T1 lines. Three lines were selected and gene expression confirmed by northern and western blots. Transgenic seeds were germinated on media with different concentrations of mannitol (0, 0.25, 0.5 and 0.75 M) and sodium chloride (0, 0.07, 0.14, 0.2, 0.27 and 0.34 M) to score their tolerance to osmotic stress. Assays were conducted to test the tolerance of transgenic plants to drought (measurement of water percentage as a consequence of water withdrawal), desiccation (measurement of water loss as a consequence leaf detaching) and temperature stresses (germination at 15 ∘C and 35∘C). Transgenic tobacco plant lines registered higher germination rates under osmotic and temperature stress situations than did wild-type plants. Responses to drought and desiccation stresses were similar for all plant lines. It can hence be suggested that the heterologous expression of TPS1 gene from Arabidopsis can be used successfully to increase abiotic stress tolerance in model plants and probably in other crops.
Protoplasma | 2007
A. M. Almeida; Maria Santos; Enrique Villalobos; S. S. Araújo; P. Van Dijck; Barbara Leyman; L. A. Cardoso; D. Santos; Pedro Fevereiro; José M. Torné
Summary.Following the establishment of a transgenic line of tobacco (B5H) expressing the trehalose-6-phosphate synthase (TPS) gene from Arabidopsis thaliana, a preliminary immunolocalization study was conducted using leaves of adequately watered B5H and wild-type plants. Immunocytochemical staining, followed by electron microscopy showed that the enzyme could be detected in both B5H and wild-type plants at two different levels. Quantification showed the signal to be two to three times higher in transgenic plants than in the wild type. This enzyme was markedly present in the vacuoles and the cell wall, and to a lesser extent in the cytosol. Moreover, a high profusion of gold particles was detected in adjacent cells and in the sieve elements. Occasional spots were also detected in chloroplasts and the nucleus, especially in the transgenic B5H line. No labeling signal was detected in mitochondria. Protein localization seems to confirm the important role of TPS in sugar metabolism and transport through the plant, which could explain its role in plant stress tolerance. Finally, it can be expected that TPS from tobacco has a relatively high similarity to the TPS of Arabidopsis thaliana.
Methods of Molecular Biology | 2004
Barbara Leyman; Nelson Avonce; Matthew Ramon; Patrick Van Dijck; Johan M. Thevelein; Gabriel Iturriaga
A number of systems to insert foreign DNA into a plant genome have been developed so far. However, only a small percentage of transgenic plants are obtained using any of these methods. Stable transgenic plants are selected by co-introduction of a selectable marker gene, which in most cases are genes that confer resistance against antibiotics or herbicides. In this chapter we describe a new method for selection of transgenic plants after transformation. The selection agent used is the nontoxic and common sugar glucose. Wild-type Arabidopsis thaliana plantlets that have been germinated on glucose have small white cotyledons and remain petite because the external sugar switches off the photosynthetic mechanism. The selectable marker gene encodes the essential trehalose-6-phophate synthase, AtTPS1, that catalyzes the first reaction of the two-step trehalose synthesis. Upon ectopic expression of AtTPS1 driven by the 35S promoter, transformed Arabidopsis thaliana plants became insensitive to glucose in comparison to wild-type plants. After transformation using AtTPS1 as a selection marker and 6% glucose as selection agent it is possible to single out the green and normal sized transgenic plants amid the nontransformed plantlets.
Biochemical Society Transactions | 2005
Nelson Avonce; Barbara Leyman; Johan M. Thevelein; Gabriel Iturriaga
Volume 33 Part 1 (2005) 276–279 On page 279, the acknowledgements were omitted. These should … Volume 33 Part 1 (2005) 276–279 On page 279, the acknowledgements were omitted. These should …
Science | 1999
Barbara Leyman; Danny Geelen; Francisco J. Quintero; Michael R. Blatt