Barbara Malawska
Jagiellonian University Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Malawska.
Current Medicinal Chemistry | 2007
Anna Musiał; Marek Bajda; Barbara Malawska
Alzheimers disease (AD) is a progressive neurodegenerative disorder of the central nervous system (CNS) which is the most common cause of dementia in the elderly. It is characterized by the deficits in the cholinergic system and presence of characteristic hallmarks: neurofibrillary tangles and amyloid plaques. Since the cholinergic system plays an important role in the regulation of learning and memory processes it became a target for the design of anti-alzheimer drugs. Cholinesterase inhibitors enhance cholinergic transmission indirectly, by inhibiting the enzyme which hydrolyses acetylcholine. It has been also demonstrated that acetylcholinesterase (AChE) is involved in the development of amyloid plaques. Therefore, substances which are AChE inhibitors (AChEI) are the only drugs approved for the symptomatic treatment of AD. This review presents the main classes of cholinesterase inhibitors developed recently for the treatment of AD. We have started with the analogues of the existing drugs: tacrine, donepezil, rivastigmine and galantamine which are still of interest for many research groups. Among them there is a very interesting group--dual binding site inhibitors characterized by increased inhibitory potency against AChE and amyloid plaques formation. There is also a group of compounds with additional properties such as: antioxidant activity, affinity to 5-HT(3) receptors, inhibition of N-methyltransferase that metabolize histamine, which can be beneficial for the treatment of AD. Furthermore there are some interesting compounds which belong to different chemical groups also of natural origin. In this review we sum up current research concerned with development of AChEIs which can be more effective in the future treatment of AD.
Current Medicinal Chemistry | 2014
Natalia Guzior; Anna Więckowska; Dawid Panek; Barbara Malawska
Alzheimer’s disease (AD) is a complex and progressive neurodegenerative disorder. The available therapy is limited to the symptomatic treatment and its efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the development of an effective therapy is crucial for public health. Due to the multifactorial aetiology of this disease, the multi-target-directed ligand (MTDL) approach is a promising method in search for new drugs for AD. This review updates information on the development of multifunctional potential anti-AD agents published within the last three years. The majority of the recently reported structures are acetylcholinesterase inhibitors, often endowed with some additional properties. These properties enrich the pharmacological profile of the compounds giving hope for not only symptomatic but also causal treatment of the disease. Among these advantageous properties, the most often reported are an amyloid-β anti-aggregation activity, inhibition of β-secretase and monoamine oxidase, an antioxidant and metal chelating activity, NO-releasing ability and interaction with cannabinoid, NMDA or histamine H3 receptors. The majority of novel molecules possess heterodimeric structures, able to interact with multiple targets by combining different pharmacophores, original or derived from natural products or existing therapeutics (tacrine, donepezil, galantamine, memantine). Among the described compounds, several seem to be promising drug candidates, while others may serve as a valuable inspiration in the search for new effective therapies for AD.
Current Medicinal Chemistry | 2011
Marek Bajda; Natalia Guzior; M. Ignasik; Barbara Malawska
Among the various drug discovery methods, a very promising modern approach consists in designing multi-target-directed ligands (MTDLs). This methodology has been specifically developed for treatment of disorders with complex pathological mechanisms. One such disorder is Alzheimers disease (AD), currently the most common multifactorial neurodegenerative disease. AD is related to increased levels of the amyloid β peptide (Aβ) and the hyperphosphorylated tau protein, along with loss of neurons and synapses. Moreover, there is some evidence pointing to the role of oxidative stress, metal ion deregulation, inflammation and cell cycle regulatory failure in its pathogenesis. There are many attractive targets for the development of anti-AD drugs, and the multi-factor nature of this disease calls for multi-target-directed compounds which can be beneficial for AD treatment. This review presents the discovery of dualand multi-acting anti-AD drug candidates, focusing on the novel design strategy and the compounds it yields - particularly hybrids obtained by linking structurally active moieties interacting with different targets. The first group of compounds includes cholinesterase inhibitors acting as dual binding site inhibitors and/or inhibitors with additional properties. These compounds are characterized by increased potency against acetylcholinesterase (AChE) and Aβ plaque formation with additional properties such as antioxidant activity, neuroprotective, and metal-complexing property, voltage-dependent calcium channel antagonistic activity, inhibitory activity against glutamate-induced excitotoxicity, histamine H(3) receptor antagonism, cannabinoid CB(1) receptor antagonism and β-secretase (BACE1) inhibition. A novel class of compounds represents the combination of dual BACE1 inhibitors with metal chelators, and dual modulators of γ-secretase with peroxisome proliferator-ativated receptor γ (PPARγ). We have reviewed the latest reports (2008-2011) presenting new multi-target-directed compounds in Alzheimers disease treatment.
Pharmacological Reports | 2016
Justyna Godyń; Jakub Jończyk; Dawid Panek; Barbara Malawska
Alzheimers disease (AD) is considered to be the most common cause of dementia and is an incurable, progressive neurodegenerative disorder. Current treatment of the disease, essentially symptomatic, is based on three cholinesterase inhibitors and memantine, affecting the glutamatergic system. Since 2003, no new drugs have been approved for treatment of AD. This article presents current directions in the search for novel, potentially effective agents for the treatment of AD, as well as selected promising treatment strategies. These include agents acting upon the beta-amyloid, such as vaccines, antibodies and inhibitors or modulators of γ- and β-secretase; agents directed against the tau protein as well as compounds acting as antagonists of neurotransmitter systems (serotoninergic 5-HT6 and histaminergic H3). Ongoing clinical trials with Aβ antibodies (solanezumab, gantenerumab, crenezumab) seem to be promising, while vaccines against the tau protein (AADvac1 and ACI-35) are now in early-stage trials. Interesting results have also been achieved in trials involving small molecules such as inhibitors of β-secretase (MK-8931, E2609), a combination of 5-HT6 antagonist (idalopirdine) with donepezil, inhibition of advanced glycation end product receptors by azeliragon or modulation of the acetylcholine response of α-7 nicotinic acetylcholine receptors by encenicline. Development of new effective drugs acting upon the central nervous system is usually a difficult and time-consuming process, and in the case of AD to-date clinical trials have had a very high failure rate. Most phase II clinical trials ending with a positive outcome do not succeed in phase III, often due to serious adverse effects or lack of therapeutic efficacy.
Current Topics in Medicinal Chemistry | 2005
Barbara Malawska
The search for antiepileptic compounds with more selective activity and lower toxicity continues to be an area of intensive investigation in medicinal chemistry. This review describes new anticonvulsant agents representing various structures for which the precise mechanism of action is still not known. Many of the compounds presented in this review have been tested according to the procedure established by the Antiepileptic Drug Development Program of the Epilepsy Branch of the National Institute of Neurological Disorders and Stroke, National Institute of Health, USA. The newer agents include sulfonamides, amino acids, amides (analogs of gamma-vinyl GABA, N-benzylamides, 2,6-dimethylanilides, carboxyamides, hydroxyamides, alkanoamides); heterocyclic agents ((arylalkyl)imidazoles, pyrrolidin-2,5-diones, lactams, semi- thiosemicarbazones, thiadiazoles, quinazolin-4(3H)-ones, 2,5-disubstituted 1,2,4-thadiazoles, xanthones, derivatives of isatin) and enaminones. These new structural classes of compounds can prove useful for the design of future targets and development of new drugs.
International Journal of Molecular Sciences | 2013
Marek Bajda; Anna Więckowska; Michalina Hebda; Natalia Guzior; Christoph A. Sotriffer; Barbara Malawska
Cholinesterases are important biological targets responsible for regulation of cholinergic transmission, and their inhibitors are used for the treatment of Alzheimer’s disease. To design new cholinesterase inhibitors, of different structure-based design strategies was followed, including the modification of compounds from a previously developed library and a fragment-based design approach. This led to the selection of heterodimeric structures as potential inhibitors. Synthesis and biological evaluation of selected candidates confirmed that the designed compounds were acetylcholinesterase inhibitors with IC50 values in the mid-nanomolar to low micromolar range, and some of them were also butyrylcholinesterase inhibitors.
European Journal of Medicinal Chemistry | 2002
Barbara Malawska; Katarzyna Kulig; Barbara Filipek; Jacek Sapa; Dorota Maciąg; Małgorzata Zygmunt; Lucyna Antkiewicz-Michaluk
A series of 1-substituted pyrrolidin-2-one and pyrrolidine derivatives were synthesised and tested for electrocardiographic, antiarrhythmic, and antihypertensive activity as well as for alpha(1)- and alpha(2)-adrenoceptors binding affinities. Among the newly synthesised derivatives several compounds with 3-(4-arylpiperazin-1-yl)propyl moiety displayed strong antiarrhythmic (7a-12a) and antihypertensive (7a-11a) activities. Compound 11a, 1-[2-acetoxy-3-[4-(2-methoxyphenyl)piperazin-1-yl]propyl]pyrrolidin-2-one, was the most potent in this series. The pharmacological results and binding studies suggest that their antiarrhythmic and hypotensive effects may be related to their alpha-adrenolytic properties, and that those properties depend on the presence of the 1-phenylpiperazine moiety with a methoxy- or chloro- substituent in the ortho position in the phenyl ring.
European Journal of Medicinal Chemistry | 2015
Natalia Guzior; Marek Bajda; Mirosław Skrok; Katarzyna Kurpiewska; Krzysztof Lewiński; Boris Brus; Anja Pišlar; Janko Kos; Stanislav Gobec; Barbara Malawska
The presented study describes the synthesis, pharmacological evaluation (AChE and BuChE inhibition, beta amyloid anti-aggregation effect and neuroprotective effect), molecular modeling and crystallographic studies of a novel series of isoindoline-1,3-dione derivatives. The target compounds were designed as dual binding site acetylcholinesterase inhibitors with an arylalkylamine moiety binding at the catalytic site of the enzyme and connected via an alkyl chain to a heterocyclic fragment, capable of binding at the peripheral anionic site of AChE. Among these molecules, compound 15b was found to be the most potent and selective AChE inhibitor (IC50EeAChE = 0.034 μM). Moreover, compound 13b in addition to AChE inhibition (IC50 EeAChE = 0.219 μM) possesses additional properties, such as the ability to inhibit Aβ aggregation (65.96% at 10 μM) and a neuroprotective effect against Aβ toxicity at 1 and 3 μM. Compound 13b emerges as a promising multi-target ligand for the further development of the therapy for age-related neurodegenerative disorders.
Pharmacology, Biochemistry and Behavior | 2014
Kinga Sałat; Agnieszka Cios; Elżbieta Wyska; Robert Sałat; Szczepan Mogilski; Barbara Filipek; Krzysztof Więckowski; Barbara Malawska
BACKGROUND Anticancer drugs - oxaliplatin (OXPT) and paclitaxel (PACLI) cause painful peripheral neuropathy activating Transient Receptor Potential (TRP) channels. Here we investigated the influence of 3-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-dihydrofuran-2-one (LPP1) and pregabalin on nociceptive thresholds in neuropathic pain models elicited by these drugs. Pharmacokinetics of LPP1 and its ability to attenuate neurogenic pain caused by TRP agonists: capsaicin and allyl isothiocyanate (AITC) were also investigated. METHODS Antiallodynic and antihyperalgesic effects of intraperitoneally administered LPP1 and pregabalin were tested in the von Frey, hot plate and cold water tests. The influence of LPP1 on locomotor activity and motor coordination was assessed using actimeters and rotarod. Serum and tissue concentrations of LPP1 were measured using the HPLC method with fluorimetric detection. RESULTS In OXPT-treated mice LPP1 and pregabalin dose-dependently reduced tactile allodynia (41-106% and 6-122%, respectively, p<0.01). At the dose of 10mg/kg LPP1 attenuated cold allodynia. In PACLI-treated mice LPP1 and pregabalin reduced tactile allodynia by 12-63% and 8-50%, respectively (p<0.01). Both drugs did not affect cold allodynia, whereas pregabalin (30 mg/kg) attenuated heat hyperalgesia (80% vs. baseline latency time; p<0.01). No motor impairments were observed in LPP1 or pregabalin-treated neuropathic mice in the rotarod test, while severe sedation was noted in the locomotor activity test. LPP1 reduced pain induced by capsaicin (51%; p<0.01) and AITC (41%; p<0.05). The mean serum concentration of LPP1 measured 30 min following i.p. administration was 7904.6 ± 1066.1 ng/ml. Similar levels were attained in muscles, whereas brain concentrations were 62% lower. Relatively high concentrations of LPP1 were also determined in the cerebrospinal fluid and the sciatic nerve. CONCLUSIONS LPP1 and pregabalin reduce pain in OXPT and PACLI-treated mice. This activity of LPP1 might be in part attributed to the inhibition of TRPV1 and TRPA1 channels, but also central mechanisms of action cannot be ruled out.
Archiv Der Pharmazie | 2012
Michalina Ignasik; Marek Bajda; Natalia Guzior; Michaela Prinz; Ulrike Holzgrabe; Barbara Malawska
A new series of 2‐(diethylaminoalkyl)‐isoindoline‐1,3‐dione derivatives intended as dual binding site cholinesterase inhibitors were designed using molecular modeling and evaluated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and the formation of the β‐amyloid (Aβ) plaques. For AChE inhibitory activity, the spectrophotometric method of Ellman and the electrophoretically mediated microanalysis assay were used, giving good results. Most of the synthesized compounds had AChE inhibitory activity with IC50 values ranging from IC50 = 0.9 to 19.5 µM and weak Aβ anti‐aggregation inhibitory activity. These results support the outcome of docking studies which tested compounds targeting both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. The most promising selective AChE inhibitors are compounds 10 (IC50 = 1.2 µM) and 11 (IC50 = 1.1 µM), with 6–7 methylene chains, which also inhibit Aβ fibril formation.