Jakub Jończyk
Jagiellonian University Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jakub Jończyk.
Pharmacological Reports | 2016
Justyna Godyń; Jakub Jończyk; Dawid Panek; Barbara Malawska
Alzheimers disease (AD) is considered to be the most common cause of dementia and is an incurable, progressive neurodegenerative disorder. Current treatment of the disease, essentially symptomatic, is based on three cholinesterase inhibitors and memantine, affecting the glutamatergic system. Since 2003, no new drugs have been approved for treatment of AD. This article presents current directions in the search for novel, potentially effective agents for the treatment of AD, as well as selected promising treatment strategies. These include agents acting upon the beta-amyloid, such as vaccines, antibodies and inhibitors or modulators of γ- and β-secretase; agents directed against the tau protein as well as compounds acting as antagonists of neurotransmitter systems (serotoninergic 5-HT6 and histaminergic H3). Ongoing clinical trials with Aβ antibodies (solanezumab, gantenerumab, crenezumab) seem to be promising, while vaccines against the tau protein (AADvac1 and ACI-35) are now in early-stage trials. Interesting results have also been achieved in trials involving small molecules such as inhibitors of β-secretase (MK-8931, E2609), a combination of 5-HT6 antagonist (idalopirdine) with donepezil, inhibition of advanced glycation end product receptors by azeliragon or modulation of the acetylcholine response of α-7 nicotinic acetylcholine receptors by encenicline. Development of new effective drugs acting upon the central nervous system is usually a difficult and time-consuming process, and in the case of AD to-date clinical trials have had a very high failure rate. Most phase II clinical trials ending with a positive outcome do not succeed in phase III, often due to serious adverse effects or lack of therapeutic efficacy.
Archiv Der Pharmazie | 2012
Marek Bajda; Kamil Kuder; Dorota Łażewska; Katarzyna Kieć-Kononowicz; Anna Więckowska; Michalina Ignasik; Natalia Guzior; Jakub Jończyk; Barbara Malawska
The study presents novel biological properties of diether derivatives of homo‐ or substituted piperidine ligands of the histamine H3 receptor. The compounds were evaluated for their inhibitory potency against acetylcholinesterase (AChE) from the electric eel and butyrylcholinesterase (BuChE) from horse serum. The most interesting multifunctional compound 13 displayed high affinity for the cloned hH3R (Ki = 3.48 nM) and moderate inhibitory potency against both enzymes (IC50 AChE = 7.91 µM and BuChE = 4.97 µM). Molecular modeling studies revealed interactions with key amino acid residues in the homology model of histamine H3 receptor ligands, as well as the binding model for AChE and BuChE in the catalytic and peripheral active sites.
Bioorganic Chemistry | 2016
Sadaf Mutahir; Jakub Jończyk; Marek Bajda; Islam Ullah Khan; Muhammad Asim Khan; Nisar Ullah; Muhammad Ashraf; Qurat-ul-Ain; Sadaf Riaz; Sajjad Hussain; Muhammad Yar
A series of new biphenyl bis-sulfonamide derivatives 2a-3p were synthesized in good to excellent yield (76-98%). The inhibitory potential of the synthesized compounds on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was investigated. Most of the screened compounds showed modest in vitro inhibition for both AChE and BChE. Compared to the reference compound eserine (IC50 0.04 ± 0.0001 μM for AChE) and (IC50 0.85 ± 0.0001 μM for BChE), the IC50 values of these compounds were ranged from 2.27 ± 0.01 to 123.11 ± 0.04 μM for AChE and 7.74 ± 0.07 to <400 μM for BuChE. Among the tested compounds, 3p was found to be the most potent against AChE (IC50 2.27 ± 0.01 μM), whereas 3g exhibited the highest inhibition for BChE (IC50 7.74 ± 0.07 μM). Structure-activity relationship (SAR) of these compounds was developed and elaborated with the help of molecular docking studies.
Bioorganic & Medicinal Chemistry | 2015
Marek Bajda; Jakub Jończyk; Barbara Malawska; Kamila Czarnecka; Małgorzata Girek; Paulina Olszewska; Joanna Sikora; Elżbieta Mikiciuk-Olasik; Robert Skibiński; Anna Gumieniczek; Paweł Szymański
A novel series of 9-amino-1,2,3,4-tetrahydroacridine derivatives with 4-dimethylaminobenzoic acid moiety was synthesized and tested towards inhibition of cholinesterases and amyloid β aggregation. Target compounds were designed as dual binding site cholinesterase inhibitors able to bind to both the catalytic and the peripheral site of the enzyme and therefore potentially endowed with other properties. The obtained derivatives were very potent inhibitors of both cholinesterases (EeAChE, EqBChE) with IC50 values ranging from sub-nanomolar to nanomolar range, and the inhibitory potency of the most promising agents was higher than that of the reference drugs (rivastigmine and tacrine). The kinetic studies of the most active compound 3a revealed competitive type of AChE inhibition. Moreover, all target compounds were more potent inhibitors of human AChE than tacrine with the most active compound 3b (IC50 = 19 nM). Compound 3a was also tested and displayed inhibitory potency against AChE-induced Aβ 1-42 aggregation (80.6% and 91.3% at 50 μM and 100 μM screening concentration, respectively). Moreover, cytotoxicity assay performed on A549 cells did not indicate toxicity of this agent. Compound 3a is a promising candidate for further development of novel multi-functional agents in the therapy of AD.
Bioorganic & Medicinal Chemistry | 2015
Abdul Rauf; Sohail Anjum Shahzad; Marek Bajda; Muhammad Yar; Faiz Ahmed; Nazar Hussain; Muhammad Nadeem Akhtar; Ajmal Khan; Jakub Jończyk
In this study 36 new compounds were synthesized by condensing barbituric acid or thiobarbituric acid and respective anilines (bearing different substituents) in the presence of triethyl orthoformate in good yields. In vitro urease inhibition studies against jack bean urease revealed that barbituric acid derived compounds (1-9 and 19-27) were found to exhibit low to moderate activity however thiobarbituric acid derived compounds (10-18 and 28-36) showed significant inhibition activity at low micro-molar concentrations. Among the synthesized compounds, compounds (15), (12), (10), (36), (16) and (35) showed excellent urease inhibition with IC50 values 8.53 ± 0.027, 8.93 ± 0.027, 12.96 ± 0.13, 15 ± 0.098, 18.9 ± 0.027 and 19.7 ± 0.63 μM, respectively, even better than the reference compound thiourea (IC50 = 21 ± 0.011). The compound (11) exhibited comparable activity to the standard with IC50 value 21.83 ± 0.19 μM. In silico molecular docking studies for most active compounds (10), (12), (15), (16), (35) and (36) and two inactive compounds (3) and (6) were performed to predict the binding patterns.
Bioorganic Chemistry | 2017
Kamila Czarnecka; Paweł Szymański; Małgorzata Girek; Elżbieta Mikiciuk-Olasik; Robert Skibiński; Jacek Kabziński; Ireneusz Majsterek; Barbara Malawska; Jakub Jończyk; Marek Bajda
A novel series of 9-amino-1,2,3,4-tetrahydroacridine derivatives with 2-fluorobenzoic acid or 3-fluorobenzoic acid moiety were designed, synthesized and evaluated as inhibitors of cholinesterases and aggregation of β-amyloid. In the study target compounds were very potent inhibitors of AChE and BChE. The most promising agents had higher inhibitory potency than the reference drugs which was tacrine. Ultimately, the kinetic assay shows the most active target compound 3c against AChE. Almost all of them were more potent against BChE than AChE. Compound 3c in various concentrations was tested by aggregation experiment. Inhibition of β-amyloid aggregation was 77.32% and 80.43% at 50µM and 100µM, respectively. Therefore, compound 3c is a promising agent for the treatment of AD.
PLOS ONE | 2017
Jakub Jończyk; Barbara Malawska; Marek Bajda
The crucial role of G-protein coupled receptors and the significant achievements associated with a better understanding of the spatial structure of known receptors in this family encouraged us to undertake a study on the histamine H3 receptor, whose crystal structure is still unresolved. The latest literature data and availability of different software enabled us to build homology models of higher accuracy than previously published ones. The new models are expected to be closer to crystal structures; and therefore, they are much more helpful in the design of potential ligands. In this article, we describe the generation of homology models with the use of diverse tools and a hybrid assessment. Our study incorporates a hybrid assessment connecting knowledge-based scoring algorithms with a two-step ligand-based docking procedure. Knowledge-based scoring employs probability theory for global energy minimum determination based on information about native amino acid conformation from a dataset of experimentally determined protein structures. For a two-step docking procedure two programs were applied: GOLD was used in the first step and Glide in the second. Hybrid approaches offer advantages by combining various theoretical methods in one modeling algorithm. The biggest advantage of hybrid methods is their intrinsic ability to self-update and self-refine when additional structural data are acquired. Moreover, the diversity of computational methods and structural data used in hybrid approaches for structure prediction limit inaccuracies resulting from theoretical approximations or fuzziness of experimental data. The results of docking to the new H3 receptor model allowed us to analyze ligand—receptor interactions for reference compounds.
Molecules | 2018
Dawid Panek; Anna Więckowska; Anna Pasieka; Justyna Godyń; Jakub Jończyk; Marek Bajda; Damijan Knez; Stanislav Gobec; Barbara Malawska
The complex nature of Alzheimer’s disease calls for multidirectional treatment. Consequently, the search for multi-target-directed ligands may lead to potential drug candidates. The aim of the present study is to seek multifunctional compounds with expected activity against disease-modifying and symptomatic targets. A series of 15 drug-like various substituted derivatives of 2-(benzylamino-2-hydroxyalkyl)isoindoline-1,3-diones was designed by modification of cholinesterase inhibitors toward β-secretase inhibition. All target compounds have been synthesized and tested against eel acetylcholinesterase (eeAChE), equine serum butyrylcholinesterase (eqBuChE), human β-secretase (hBACE-1), and β-amyloid (Aβ-aggregation). The most promising compound, 12 (2-(5-(benzylamino)-4-hydroxypentyl)isoindoline-1,3-dione), displayed inhibitory potency against eeAChE (IC50 = 3.33 μM), hBACE-1 (43.7% at 50 μM), and Aβ-aggregation (24.9% at 10 μM). Molecular modeling studies have revealed possible interaction of compound 12 with the active sites of both enzymes—acetylcholinesterase and β-secretase. In conclusion: modifications of acetylcholinesterase inhibitors led to the discovery of a multipotent anti-Alzheimer’s agent, with moderate and balanced potency, capable of inhibiting acetylcholinesterase, a symptomatic target, and disease-modifying targets: β-secretase and Aβ-aggregation.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2018
Kamila Czarnecka; Małgorzata Girek; Karolina Maciejewska; Robert Skibiński; Jakub Jończyk; Marek Bajda; Jacek Kabziński; Przemysław Sołowiej; Ireneusz Majsterek; Paweł Szymański
Abstract Alzheimer’s disease (AD) is the most common progressive form of brain neurodegeneration and the most prevailing cause of dementia. Unfortunately, the aetiology of AD is not completely studied but different factors are associated with the development of AD such as among others low level of acetylcholine, aggregation of β-amyloid (Aβ), hyperphosphorylated tau protein, oxidative stress, and inflammation. The study encompass organic syntheses of 2,3-dihydro-1H-cyclopenta[b]quinoline with 5,6-dichloronicotinic acid and suitable linkers derivatives as multifunctional agents for AD treatment. Afterwards self-induced amyloid beta aggregation, inhibition studies of acetylcholinesterase and butyrylcholinesterase and molecular docking studies were performed. The results showed that 3b compound exhibited the best acetylcholinesterase inhibitory activity, with IC50 value of 0.052 µM which is lower compared to references. Besides, all synthesised compounds showed good butyrylcholinesterase inhibitory activity with IC50 values from 0.071 to 0.797 µM. Compound 3b exhibited strong Aβ1–42 aggregation inhibitory effect with 25.7% at 5 µM to 92.8% at 100 µM as well as good anti-inflammatory effect. Thus, new compounds could create new perspectives for further development as a multi-target-directed agent for AD treatment. Graphical Abstract
European Journal of Medicinal Chemistry | 2018
Kamila Czarnecka; Nina Chufarova; Krzysztof Halczuk; Karolina Maciejewska; Małgorzata Girek; Robert Skibiński; Jakub Jończyk; Marek Bajda; Jacek Kabziński; Ireneusz Majsterek; Paweł Szymański
A novel series of 9-amino-1,2,3,4-tetrahydroacridine and 5,6-dichloronicotinic acid moiety were conjugated with different linkers. Afterwards new derivatives were evaluated as potential multifunctional acetylcholinesterase inhibitors (AChEIs), anti-Alzheimers disease (AD) drug candidates. All the compounds were synthesized and tested for capacity for the inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. Specifically, the most promising derivative 3b (IC50 = 1.02 nM) had higher inhibitory potency compared to the reference drug, tacrine. Consequently, kinetic studies of 3b compound showed a mixed-type inhibition of both AChE and BuChE. Afterwards the best potent AChE inhibitor has been examined on amyloid β (Aβ) self-induced aggregation. Furthermore, 3b compound was tested in various concentrations and had moderate activity against Aβ aggregation. Inhibition of Aβ aggregation was 46.63% and 19.41% at 50 μM and 5 μM concentrations, respectively. Moreover, no cytotoxicity was observed for the mentioned concentrations. Therefore, 3b compound is a promising multipotent agent for the treatment of AD.