Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Möller is active.

Publication


Featured researches published by Barbara Möller.


Nature | 2010

MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor

Alexandra Schlereth; Barbara Möller; Weilin Liu; Marika Kientz; Jacky Flipse; Eike H. Rademacher; Markus Schmid; Gerd Jürgens; Dolf Weijers

Acquisition of cell identity in plants relies strongly on positional information, hence cell–cell communication and inductive signalling are instrumental for developmental patterning. During Arabidopsis embryogenesis, an extra-embryonic cell is specified to become the founder cell of the primary root meristem, hypophysis, in response to signals from adjacent embryonic cells. The auxin-dependent transcription factor MONOPTEROS (MP) drives hypophysis specification by promoting transport of the hormone auxin from the embryo to the hypophysis precursor. However, auxin accumulation is not sufficient for hypophysis specification, indicating that additional MP-dependent signals are required. Here we describe the microarray-based isolation of MP target genes that mediate signalling from embryo to hypophysis. Of three direct transcriptional target genes, TARGET OF MP 5 (TMO5) and TMO7 encode basic helix–loop–helix (bHLH) transcription factors that are expressed in the hypophysis-adjacent embryo cells, and are required and partially sufficient for MP-dependent root initiation. Importantly, the small TMO7 transcription factor moves from its site of synthesis in the embryo to the hypophysis precursor, thus representing a novel MP-dependent intercellular signal in embryonic root specification.


Current Biology | 2010

A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity.

Bert De Rybel; Valya Vassileva; Boris Parizot; Marlies Demeulenaere; Wim Grunewald; Dominique Audenaert; Jelle Van Campenhout; Paul Overvoorde; Leentje Jansen; Steffen Vanneste; Barbara Möller; Michael Wilson; Tara J. Holman; Gert Van Isterdael; Géraldine Brunoud; Marnik Vuylsteke; Teva Vernoux; Lieven De Veylder; Dirk Inzé; Dolf Weijers; Malcolm J. Bennett; Tom Beeckman

BACKGROUND Lateral roots are formed at regular intervals along the main root by recurrent specification of founder cells. To date, the mechanism by which branching of the root system is controlled and founder cells become specified remains unknown. RESULTS Our study reports the identification of the auxin regulatory components and their target gene, GATA23, which control lateral root founder cell specification. Initially, a meta-analysis of lateral root-related transcriptomic data identified the GATA23 transcription factor. GATA23 is expressed specifically in xylem pole pericycle cells before the first asymmetric division and is correlated with oscillating auxin signaling maxima in the basal meristem. Also, functional studies revealed that GATA23 controls lateral root founder cell identity. Finally, we show that an Aux/IAA28-dependent auxin signaling mechanism in the basal meristem controls GATA23 expression. CONCLUSIONS We have identified the first molecular components that control lateral root founder cell identity in the Arabidopsis root. These include an IAA28-dependent auxin signaling module in the basal meristem region that regulates GATA23 expression and thereby lateral root founder cell specification and root branching patterns.


Cold Spring Harbor Perspectives in Biology | 2009

Auxin Control of Embryo Patterning

Barbara Möller; Dolf Weijers

Plants start their life as a single cell, which, during the process of embryogenesis, is transformed into a mature embryo with all organs necessary to support further growth and development. Therefore, each basic cell type is first specified in the early embryo, making this stage of development excellently suited to study mechanisms of coordinated cell specification-pattern formation. In recent years, it has emerged that the plant hormone auxin plays a prominent role in embryo development. Most pattern formation steps in the early Arabidopsis embryo depend on auxin biosynthesis, transport, and response. In this article, we describe those embryo patterning steps that involve auxin activity, and we review recent data that shed light on the molecular mechanisms of auxin action during this phase of plant development.


Developmental Cell | 2013

A bHLH Complex Controls Embryonic Vascular Tissue Establishment and Indeterminate Growth in Arabidopsis

Bert De Rybel; Barbara Möller; Ilona Grabowicz; Pierre Barbier de Reuille; Richard S. Smith; Jan Willem Borst; Dolf Weijers

Plants have a remarkable potential for sustained (indeterminate) postembryonic growth. Following their specification in the early embryo, tissue-specific precursor cells first establish tissues and later maintain them postembryonically. The mechanisms underlying these processes are largely unknown. Here we define local control of oriented, periclinal cell division as the mechanism underlying both the establishment and maintenance of vascular tissue. We identify an auxin-regulated basic helix-loop-helix (bHLH) transcription factor dimer as a critical regulator of vascular development. Due to a loss of periclinal divisions, vascular tissue gradually disappears in bHLH-deficient mutants; conversely, ectopic expression is sufficient for triggering periclinal divisions. We show that this dimer operates independently of tissue identity but is restricted to a small vascular domain by integrating overlapping transcription patterns of the interacting bHLH proteins. Our work reveals a common mechanism for tissue establishment and indeterminate vascular development and provides a conceptual framework for developmental control of local cell divisions.


Cell Research | 2011

The AP-3 adaptor complex is required for vacuolar function in Arabidopsis

Marta Zwiewka; Elena Feraru; Barbara Möller; Inhwan Hwang; Mugurel I. Feraru; Jürgen Kleine-Vehn; Dolf Weijers; Jiří Friml

Subcellular trafficking is required for a multitude of functions in eukaryotic cells. It involves regulation of cargo sorting, vesicle formation, trafficking and fusion processes at multiple levels. Adaptor protein (AP) complexes are key regulators of cargo sorting into vesicles in yeast and mammals but their existence and function in plants have not been demonstrated. Here we report the identification of the protein-affected trafficking 4 (pat4) mutant defective in the putative δ subunit of the AP-3 complex. pat4 and pat2, a mutant isolated from the same GFP imaging-based forward genetic screen that lacks a functional putative AP-3 β, as well as dominant negative AP-3 μ transgenic lines display undistinguishable phenotypes characterized by largely normal morphology and development, but strong intracellular accumulation of membrane proteins in aberrant vacuolar structures. All mutants are defective in morphology and function of lytic and protein storage vacuoles (PSVs) but show normal sorting of reserve proteins to PSVs. Immunoprecipitation experiments and genetic studies revealed tight functional and physical associations of putative AP-3 β and AP-3 δ subunits. Furthermore, both proteins are closely linked with putative AP-3 μ and σ subunits and several components of the clathrin and dynamin machineries. Taken together, these results demonstrate that AP complexes, similar to those in other eukaryotes, exist in plants, and that AP-3 plays a specific role in the regulation of biogenesis and function of vacuoles in plant cells.


Plant Physiology | 2011

A versatile set of Ligation-Independent Cloning vectors for functional studies in plants

Bert De Rybel; Willy A. M. van den Berg; Annemarie S. Lokerse; Che-Yang Liao; Hilda van Mourik; Barbara Möller; Cristina I. Llavata Peris; Dolf Weijers

With plant molecular biology in the omics era, there is a need for simple cloning strategies that allow high throughput to systematically study the expression and function of large numbers of genes. Such strategies would facilitate the analysis of gene (sub)families and/or sets of coexpressed genes identified by transcriptomics. Here, we provide a set of 34 ligation-independent cloning (LIC) binary vectors for expression analysis, protein localization studies, and misexpression that will be made freely available. This set of plant LIC vectors offers a fast alternative to standard cloning strategies involving ligase or recombination enzyme technology. We demonstrate the use of this strategy and our new vectors by analyzing the expression domains of genes belonging to two subclades of the basic helix-loop-helix transcription factor family. We show that neither the closest homologs of TARGET OF MONOPTEROS7 (TMO7/ATBS1) nor the members of the ATBS1 INTERACTING FACTOR subclade of putative TMO7 interactors are expressed in the embryo and that there is very limited coexpression in the primary root meristem. This suggests that these basic helix-loop-helix transcription factors are most likely not involved in TMO7-dependent root meristem initiation.


Current Biology | 2015

Root Cap-Derived Auxin Pre-patterns the Longitudinal Axis of the Arabidopsis Root

Wei Xuan; Dominique Audenaert; Boris Parizot; Barbara Möller; Maria Fransiska Njo; Bert De Rybel; Gieljan De Rop; Gert Van Isterdael; Ari Pekka Mähönen; Steffen Vanneste; Tom Beeckman

During the exploration of the soil by plant roots, uptake of water and nutrients can be greatly fostered by a regular spacing of lateral roots (LRs). In the Arabidopsis root, a regular branching pattern depends on oscillatory gene activity to create prebranch sites, patches of cells competent to form LRs. Thus far, the molecular components regulating the oscillations still remain unclear. Here, we show that a local auxin source in the root cap, derived from the auxin precursor indole-3-butyric acid (IBA), modulates the oscillation amplitude, which in turn determines whether a prebranch site is created or not. Moreover, transcriptome profiling identified novel and IBA-regulated components of root patterning, such as the MEMBRANE-ASSOCIATED KINASE REGULATOR4 (MAKR4) that converts the prebranch sites into a regular spacing of lateral organs. Thus, the spatiotemporal patterning of roots is fine-tuned by the root cap-specific conversion pathway of IBA to auxin and the subsequent induction of MAKR4.


Science | 2016

Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis

Wei Xuan; Leah R. Band; Robert P. Kumpf; Daniël Van Damme; Boris Parizot; Gieljan De Rop; Davy Opdenacker; Barbara Möller; Noemi Skorzinski; Maria Fransiska Njo; Bert De Rybel; Dominique Audenaert; Moritz K. Nowack; Steffen Vanneste; Tom Beeckman

Cell death establishes a site for development As plant roots grow through the soil, lateral roots emerge to reach more resources. Xuan et al. now show that programmed cell death sets the course for lateral root development. Cells in a specialized region of the root cap periodically die off as a group, defining a location at which a lateral root will later develop. Science, this issue p. 384 Cycles of programmed cell death establish the developmental clock in plant roots. The plant root cap, surrounding the very tip of the growing root, perceives and transmits environmental signals to the inner root tissues. In Arabidopsis thaliana, auxin released by the root cap contributes to the regular spacing of lateral organs along the primary root axis. Here, we show that the periodicity of lateral organ induction is driven by recurrent programmed cell death at the most distal edge of the root cap. We suggest that synchronous bursts of cell death in lateral root cap cells release pulses of auxin to surrounding root tissues, establishing the pattern for lateral root formation. The dynamics of root cap turnover may therefore coordinate primary root growth with root branching in order to optimize the uptake of water and nutrients from the soil.


Development | 2012

Control of embryonic meristem initiation in Arabidopsis by PHD-finger protein complexes.

Shunsuke Saiga; Barbara Möller; Ayako Watanabe-Taneda; Mitsutomo Abe; Dolf Weijers; Yoshibumi Komeda

Plant growth is directed by the activity of stem cells within meristems. The first meristems are established during early embryogenesis, and this process involves the specification of both stem cells and their organizer cells. One of the earliest events in root meristem initiation is marked by re-specification of the uppermost suspensor cell as hypophysis, the precursor of the organizer. The transcription factor MONOPTEROS (MP) is a key regulator of hypophysis specification, and does so in part by promoting the transport of the plant hormone auxin and by activating the expression of TARGET OF MP (TMO) transcription factors, both of which are required for hypophysis specification. The mechanisms leading to the activation of these genes by MP in a chromatin context are not understood. Here, we show that the PHD-finger proteins OBERON (OBE) and TITANIA (TTA) are essential for MP-dependent embryonic root meristem initiation. TTA1 and TTA2 are functionally redundant and function in the same pathway as OBE1 and OBE2. These PHD-finger proteins interact with each other, and genetic analysis shows that OBE-TTA heterotypic protein complexes promote embryonic root meristem initiation. Furthermore, while MP expression is unaffected by mutations in OBE/TTA genes, expression of MP targets TMO5 and TMO7 is locally lost in obe1 obe2 embryos. PHD-finger proteins have been shown to act in initiation of transcription by interacting with nucleosomes. Indeed, we found that OBE1 binds to chromatin at the TMO7 locus, suggesting a role in its MP-dependent activation. Our data indicate that PHD-finger protein complexes are crucial for the activation of MP-dependent gene expression during embryonic root meristem initiation, and provide a starting point for studying the mechanisms of developmental gene activation within a chromatin context in plants.


Methods of Molecular Biology | 2017

In Vivo Identification of Plant Protein Complexes Using IP-MS/MS

Jos R. Wendrich; Barbara Möller; Dolf Weijers; Bert De Rybel

Individual proteins often function as part of a protein complex. The identification of interacting proteins is therefore vital to understand the biological role and function of the studied protein. Here we describe a method for the in vivo identification of nuclear, cytoplasmic, and membrane-associated protein complexes from plant tissues using a strategy of immunoprecipitation followed by tandem mass spectrometry. By performing quantitative mass spectrometry measurements on biological triplicates, relative abundance of proteins in GFP-tagged complexes compared to background controls can be statistically evaluated to identify high-confidence interactors. We detail the entire workflow of this approach.

Collaboration


Dive into the Barbara Möller's collaboration.

Top Co-Authors

Avatar

Dolf Weijers

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annemarie S. Lokerse

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jos R. Wendrich

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosangela Sozzani

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Wei Xuan

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge