Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Morandi is active.

Publication


Featured researches published by Barbara Morandi.


Journal of Immunology | 2004

The Abundant NK Cells in Human Secondary Lymphoid Tissues Require Activation to Express Killer Cell Ig-Like Receptors and Become Cytolytic

Guido Ferlazzo; Dolca Thomas; Shao Lee Lin; Kiera Goodman; Barbara Morandi; William A. Muller; Alessandro Moretta; Christian Münz

Natural killer cells are important cytolytic cells in innate immunity. We have characterized human NK cells of spleen, lymph nodes, and tonsils. More than 95% of peripheral blood and 85% of spleen NK cells are CD56dimCD16+ and express perforin, the natural cytotoxicity receptors (NCRs) NKp30 and NKp46, as well as in part killer cell Ig-like receptors (KIRs). In contrast, NK cells in lymph nodes have mainly a CD56brightCD16− phenotype and lack perforin. In addition, they lack KIRs and all NCR expression, except low levels of NKp46. The NK cells of tonsils also lack perforin, KIRs, NKp30, and CD16, but partially express NKp44 and NKp46. Upon IL-2 stimulation, however, lymph node and tonsilar NK cells up-regulate NCRs, express perforin, and acquire cytolytic activity for NK-sensitive target cells. In addition, they express CD16 and KIRs upon IL-2 activation, and therefore display a phenotype similar to peripheral blood NK cells. We hypothesize that IL-2 can mobilize the NK cells of secondary lymphoid tissues to mediate natural killing during immune responses. Because lymph nodes harbor 40% and peripheral blood only 2% of all lymphocytes in humans, this newly characterized perforin− NK cell compartment in lymph nodes and related tissues probably outnumbers perforin+ NK cells. These results also suggest secondary lymphoid organs as a possible site of NK cell differentiation and self-tolerance acquisition.


Journal of Immunology | 2007

CD56brightCD16− Killer Ig-Like Receptor− NK Cells Display Longer Telomeres and Acquire Features of CD56dim NK Cells upon Activation

Chiara Romagnani; Kerstin Juelke; Michela Falco; Barbara Morandi; Antonella D'agostino; Roberta Costa; Giovanni Battista Ratto; Giuseppe Forte; Paolo Carrega; Gabrielle Lui; Romana Conte; Till Strowig; Alessandro Moretta; Christian Münz; Andreas Thiel; Lorenzo Moretta; Guido Ferlazzo

Human NK cells can be divided into CD56dimCD16+ killer Ig-like receptors (KIR)+/− and CD56brightCD16− KIR− subsets that have been characterized extensively regarding their different functions, phenotype, and tissue localization. Nonetheless, the developmental relationship between these two NK cell subsets remains controversial. We report that, upon cytokine activation, peripheral blood (PB)-CD56bright NK cells mainly gain the signature of CD56dim NK cells. Remarkably, KIR can be induced not only on CD56bright, but also on CD56dim KIR− NK cells, and their expression correlates with lower proliferative response. In addition, we demonstrate for the first time that PB-CD56dim display shorter telomeres than PB- and lymph node (LN)-derived CD56bright NK cells. Along this line, although human NK cells collected from nonreactive LN display almost no KIR and CD16 expression, NK cells derived from highly reactive LN, efferent lymph, and PB express significant amounts of KIR and CD16, implying that CD56bright NK cells could acquire these molecules in the LN during inflammation and then circulate through the efferent lymph into PB as KIR+CD16+ NK cells. Altogether, our results suggest that CD56brightCD16− KIR− and CD56dimCD16+KIR+/− NK cells correspond to sequential steps of differentiation and support the hypothesis that secondary lymphoid organs can be sites of NK cell final maturation and self-tolerance acquisition during immune reaction.


European Journal of Immunology | 2003

The interaction between NK cells and dendritic cells in bacterial infections results in rapid induction of NK cell activation and in the lysis of uninfected dendritic cells.

Guido Ferlazzo; Barbara Morandi; A. D'Agostino; Raffaella Meazza; Giovanni Melioli; Alessandro Moretta; Lorenzo Moretta

NK and DC reciprocal interactions have only recently been investigated. In this study, we focused on the interplay between NK cells and DC in two models of bacterial infection. Immature monocyte‐derived DC were cultured in the presence of live Escherichia coli or bacillus Calmette–Guérin. Upon exposure to either extracellular or intracellular bacteria, DC underwent maturation as assessed by the increased levels of expression of CD80, CD86, and HLA molecules and the de novo expression of CD83 and CCR7. Significant amounts of TNF‐α and IL‐12 were released by DCupon infection, whereas IL‐2 and IL‐15 were barely detectable in culture supernatants. Both infected and uninfected DC were capable of inducing in fresh autologous NK cells the expression of CD69 and HLA‐DR and of inducing cell proliferation. Remarkably, however, infected DC were much stronger inducers of NK cell activation and proliferation than uninfected DC. Thus, after just 24 h of NK/DC coculture, only those NK cells that had been exposed to bacteria‐infected DC had acquired the ability to lyse autologous immature DC. In addition, infected DC were more resistant to NK‐mediated lysis as a consequence of the up‐regulation of HLA class I molecule expression on their surface. This study suggests a regulatory circuit involving NK cells and DC in which DC‐induced NK cell activationis effectively enhanced by the presence of pathogens. Activated NK cells, by limiting the supply of immature DC, may then exert a control on subsequent innate and adaptive immune responses.


Cancer | 2008

Natural killer cells infiltrating human nonsmall‐cell lung cancer are enriched in CD56brightCD16− cells and display an impaired capability to kill tumor cells

Paolo Carrega; Barbara Morandi; Roberta Costa; Guido Frumento; Giuseppe Forte; Giuseppe Altavilla; Giovanni Battista Ratto; Maria Cristina Mingari; Lorenzo Moretta; Guido Ferlazzo

Despite natural killer (NK) cells being originally identified and named because of their ability to kill tumor cells in vitro, only limited information is available on NK cells infiltrating malignant tumors, especially in humans.


Blood | 2010

CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells

Kerstin Juelke; Monica Killig; Merlin Luetke-Eversloh; Eliana Parente; Joachim Gruen; Barbara Morandi; Guido Ferlazzo; Andreas Thiel; Isabela Schmitt-Knosalla; Chiara Romagnani

Human natural killer (NK) cells comprise 2 main subsets, CD56(bright) and CD56(dim) cells, that differ in function, phenotype, and tissue localization. To further dissect the heterogeneity of CD56(dim) cells, we have performed transcriptome analysis and functional ex vivo characterization of human NK-cell subsets according to the expression of markers related to differentiation, migration or competence. Here, we show for the first time that the ability to respond to cytokines or to activating receptors is mutually exclusive in almost all NK cells with the exception of CD56(dim) CD62L(+) cells. Indeed, only these cells combine the ability to produce interferon-gamma after cytokines and proliferate in vivo during viral infection with the capacity to kill and produce cytokines upon engagement of activating receptors. Therefore, CD56(dim) CD62L(+) cells represent a unique subset of polyfunctional NK cells. Ex vivo analysis of their function, phenotype, telomere length, frequencies during ageing as well as transfer experiments of NK-cell subsets into immunodeficient mice suggest that CD56(dim) CD62L(+) cells represent an intermediate stage of NK-cell maturation, which after restimulation can accomplish multiple tasks and further develop into terminally differentiated effectors.


PLOS ONE | 2012

Dendritic cell editing by activated natural killer cells results in a more protective cancer-specific immune response.

Barbara Morandi; Lorenzo Mortara; Laura Chiossone; Roberto S. Accolla; Maria Cristina Mingari; Lorenzo Moretta; Alessandro Moretta; Guido Ferlazzo

Over the last decade, several studies have extensively reported that activated natural killer (NK) cells can kill autologous immature dendritic cells (DCs) in vitro, whereas they spare fully activated DCs. This led to the proposal that activated NK cells might select a more immunogenic subset of DCs during a protective immune response. However, there is no demonstration that autologous DC killing by NK cells is an event occurring in vivo and, consequently, the functional relevance of this killing remains elusive. Here we report that a significant decrease of CD11c+ DCs was observed in draining lymph nodes of mice inoculated with MHC-devoid cells as NK cell targets able to induce NK cell activation. This in vivo DC editing by NK cells was perforin-dependent and it was functionally relevant, since residual lymph node DCs displayed an improved capability to induce T cell proliferation. In addition, in a model of anti-cancer vaccination, the administration of MHC-devoid cells together with tumor cells increased the number of tumor-specific CTLs and resulted in a significant increase in survival of mice upon challenge with a lethal dose of tumor cells. Depletion of NK cells or the use of perforin knockout mice strongly decreased the tumor-specific CTL expansion and its protective role against tumor cell challenge. As a whole, our data support the hypothesis that NK cell-mediated DC killing takes place in vivo and is able to promote expansion of cancer-specific CTLs. Our results also indicate that cancer vaccines could be improved by strategies aimed at activating NK cells.


Journal of Immunology | 2014

CD56brightPerforinlow Noncytotoxic Human NK Cells Are Abundant in Both Healthy and Neoplastic Solid Tissues and Recirculate to Secondary Lymphoid Organs via Afferent Lymph

Paolo Carrega; Irene Bonaccorsi; Emma Di Carlo; Barbara Morandi; Petra Paul; Valeria Rizzello; Giuseppe Cipollone; Giuseppe Navarra; Maria Cristina Mingari; Lorenzo Moretta; Guido Ferlazzo

As limited information is available regarding the distribution and trafficking of NK cells among solid organs, we have analyzed a wide array of tissues derived from different human compartments. NK cells were widely distributed in most solid tissues, although their amount varied significantly depending on the tissue/organ analyzed. Interestingly, the distribution appeared to be subset specific, as some tissues were preferentially populated by CD56brightperforinlow NK cells, with others by the CD56dimperforinhigh cytotoxic counterpart. Nevertheless, most tissues were highly enriched in CD56brightperforinlow cells, and the distribution of NK subsets appeared in accordance with tissue gene expression of chemotactic factors, for which receptors are differently represented in the two subsets. Remarkably, chemokine expression pattern of tissues was modified after neoplastic transformation. As a result, although the total amount of NK cells infiltrating the tissues did not significantly change upon malignant transformation, the relative proportion of NK subsets infiltrating the tissues was different, with a trend toward a tumor-infiltrating NK population enriched in noncytotoxic cells. Besides solid tissues, CD56brightperforinlow NK cells were also detected in seroma fluids, which represents an accrual of human afferent lymph, indicating that they may leave peripheral solid tissues and recirculate to secondary lymphoid organs via lymphatic vessels. Our results provide a comprehensive mapping of NK cells in human tissues, demonstrating that discrete NK subsets populate and recirculate through most human tissues and that organ-specific chemokine expression patterns might affect their distribution. In this context, chemokine switch upon neoplastic transformation might represent a novel mechanism of tumor immune escape.


Nature Communications | 2015

NCR + ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures

Paolo Carrega; Fabrizio Loiacono; Emma Di Carlo; Angelo Scaramuccia; Marco Mora; Romana Conte; Roberto Benelli; Grazia Maria Spaggiari; Claudia Cantoni; Stefania Campana; Irene Bonaccorsi; Barbara Morandi; Mauro Truini; Maria Cristina Mingari; Lorenzo Moretta; Guido Ferlazzo

Tertiary lymphoid structures (TLSs) are a common finding in non-small cell lung cancer (NSCLC) and are predictors of favourable clinical outcome. Here we show that NCR(+) innate lymphoid cell (ILC)-3 are present in the lymphoid infiltrate of human NSCLC and are mainly localized at the edge of tumour-associated TLSs. This intra-tumoral lymphocyte subset is endowed with lymphoid tissue-inducing properties and, on activation, produces IL-22, TNF-α, IL-8 and IL-2, and activates endothelial cells. Tumour NCR(+)ILC3 may interact with both lung tumour cells and tumour-associated fibroblasts, resulting in the release of cytokines primarily on engagement of the NKp44-activating receptor. In patients, NCR(+)ILC3 are present in significantly higher amounts in stage I/II NSCLC than in more advanced tumour stages and their presence correlate with the density of intratumoral TLSs. Our results indicate that NCR(+)ILC3 accumulate in human NSCLC tissue and might contribute to the formation of protective tumour-associated TLSs.


Frontiers in Immunology | 2014

Cross-talks between natural killer cells and distinct subsets of dendritic cells

Guido Ferlazzo; Barbara Morandi

In recent years, the essential role of bi-directional cross-talk between natural killer (NK) and dendritic cells (DC) during immune responses has been clearly elucidated. In particular, this cross-talk results in the development of an efficient innate response, through DC-mediated NK cell activation, and a potent adaptive immune response, through NK-mediate DC editing and maturation. Recently, some novel human DC subsets have been identified: migratory DCs in afferent lymph and draining lymph nodes; CLEC9A+/BDCA3+ (CD141) DCs in interstitial dermis, liver, lung; inflammatory DCs in several inflammatory fluids. At the same time, it has been shown that also human NK cells are present in these compartments. Here, we will review the most recent findings on NK/DC cross-talk and we will discuss the necessity of acquiring more complete knowledge about these interactions in view of the new information available on both DC and NK cell subsets.


Pharmacological Research | 2008

Role of natural killer cells in the pathogenesis and progression of multiple sclerosis

Barbara Morandi; Placido Bramanti; Irene Bonaccorsi; Erika Montalto; Daniela Oliveri; Gaetana Pezzino; Michele Navarra; Guido Ferlazzo

Natural killer (NK) cells are a subset of lymphocytes which have long been alleged to play an immunoregulatory role in the prevention of autoimmune diseases. Here, we briefly review NK cell features and the major findings from studies on NK cells in human and animals susceptible to multiple sclerosis (MS). Although most studies in human seem to suggest an association between disease and deficiencies in NK cells, it is also clear that NK cells can be both protective and pathogenic in MS models. These contrasting observations could result from differences in experimental procedures as well as from differences in NK cell subset targeted. Whatever the case, the functional features of these cells and their potential role in regulation of autoimmunity suggest that NK cell-based therapies might be an interesting approach for the treatment of multiple sclerosis.

Collaboration


Dive into the Barbara Morandi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Carrega

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar

Lorenzo Moretta

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge