Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paolo Carrega is active.

Publication


Featured researches published by Paolo Carrega.


Journal of Immunology | 2007

CD56brightCD16− Killer Ig-Like Receptor− NK Cells Display Longer Telomeres and Acquire Features of CD56dim NK Cells upon Activation

Chiara Romagnani; Kerstin Juelke; Michela Falco; Barbara Morandi; Antonella D'agostino; Roberta Costa; Giovanni Battista Ratto; Giuseppe Forte; Paolo Carrega; Gabrielle Lui; Romana Conte; Till Strowig; Alessandro Moretta; Christian Münz; Andreas Thiel; Lorenzo Moretta; Guido Ferlazzo

Human NK cells can be divided into CD56dimCD16+ killer Ig-like receptors (KIR)+/− and CD56brightCD16− KIR− subsets that have been characterized extensively regarding their different functions, phenotype, and tissue localization. Nonetheless, the developmental relationship between these two NK cell subsets remains controversial. We report that, upon cytokine activation, peripheral blood (PB)-CD56bright NK cells mainly gain the signature of CD56dim NK cells. Remarkably, KIR can be induced not only on CD56bright, but also on CD56dim KIR− NK cells, and their expression correlates with lower proliferative response. In addition, we demonstrate for the first time that PB-CD56dim display shorter telomeres than PB- and lymph node (LN)-derived CD56bright NK cells. Along this line, although human NK cells collected from nonreactive LN display almost no KIR and CD16 expression, NK cells derived from highly reactive LN, efferent lymph, and PB express significant amounts of KIR and CD16, implying that CD56bright NK cells could acquire these molecules in the LN during inflammation and then circulate through the efferent lymph into PB as KIR+CD16+ NK cells. Altogether, our results suggest that CD56brightCD16− KIR− and CD56dimCD16+KIR+/− NK cells correspond to sequential steps of differentiation and support the hypothesis that secondary lymphoid organs can be sites of NK cell final maturation and self-tolerance acquisition during immune reaction.


Cancer | 2008

Natural killer cells infiltrating human nonsmall‐cell lung cancer are enriched in CD56brightCD16− cells and display an impaired capability to kill tumor cells

Paolo Carrega; Barbara Morandi; Roberta Costa; Guido Frumento; Giuseppe Forte; Giuseppe Altavilla; Giovanni Battista Ratto; Maria Cristina Mingari; Lorenzo Moretta; Guido Ferlazzo

Despite natural killer (NK) cells being originally identified and named because of their ability to kill tumor cells in vitro, only limited information is available on NK cells infiltrating malignant tumors, especially in humans.


Frontiers in Immunology | 2012

Natural killer cell distribution and trafficking in human tissues

Paolo Carrega; Guido Ferlazzo

Few data are available regarding the recirculation of natural killer (NK) cells among human organs. Earlier studies have been often impaired by the use of markers then proved to be either not sufficiently specific for NK cells (e.g., CD57, CD56) or expressed only by subsets of NK cells (e.g., CD16). At the present, available data confirmed that human NK cells populate blood, lymphoid organs, lung, liver, uterus (during pregnancy), and gut. Several studies showed that NK cell homing appears to be subset-specific, as secondary lymphoid organs and probably several solid tissues are preferentially inhabited by CD56brightCD16neg/dull non-cytotoxic NK cells. Similar studies performed in the mouse model showed that lymph node and bone marrow are preferentially populated by CD11bdull NK cells while blood, spleen, and lung by CD27dull NK cells. Therefore, an important topic to be addressed in the human system is the contribution of factors that regulate NK cell tissue homing and egress, such as chemotactic receptors or homeostatic mechanisms. Here, we review the current knowledge on NK cell distribution in peripheral tissues and, based on recent acquisitions, we propose our view regarding the recirculation of NK cells in the human body.


Blood | 2010

Human NK cells of mice with reconstituted human immune system components require preactivation to acquire functional competence

Till Strowig; Obinna Chijioke; Paolo Carrega; Frida Arrey; Sonja Meixlsperger; Patrick C. Rämer; Guido Ferlazzo; Christian Münz

To investigate human natural killer (NK)-cell reactivity in vivo we have reconstituted human immune system components by transplantation of human hematopoietic progenitor cells into NOD-scid IL2Rγ(null) mice. We demonstrate here that this model allows the development of all NK-cell subsets that are also found in human adult peripheral and cord blood, including NKp46(+)CD56(-) NK cells. Similar to human cord blood, NK cells from these reconstituted mice require preactivation by interleukin-15 to reach the functional competence of human adult NK cells. Mainly the terminally differentiated CD16(+) NK cells demonstrate lower reactivity without this stimulation. After preactivation, both CD16(+) and CD16(-) NK cells efficiently produce interferon-γ and degranulate in response to stimulation with NK cell-susceptible targets, including K562 erythroleukemia cells. NK-cell lines, established from reconstituted mice, demonstrate cytotoxicity against this tumor cell line. Importantly, preactivation can as well be achieved by bystander cell maturation via poly I:C stimulation in vitro and injection of this maturation stimulus in vivo. Preactivation in vivo enhances killing of human leukocyte antigen class I negative tumor cells after their adoptive transfer. These data suggest that a functional, but resting, NK-cell compartment can be established in immune-compromised mice after human hematopoietic progenitor cell transfer.


Journal of Immunology | 2014

CD56brightPerforinlow Noncytotoxic Human NK Cells Are Abundant in Both Healthy and Neoplastic Solid Tissues and Recirculate to Secondary Lymphoid Organs via Afferent Lymph

Paolo Carrega; Irene Bonaccorsi; Emma Di Carlo; Barbara Morandi; Petra Paul; Valeria Rizzello; Giuseppe Cipollone; Giuseppe Navarra; Maria Cristina Mingari; Lorenzo Moretta; Guido Ferlazzo

As limited information is available regarding the distribution and trafficking of NK cells among solid organs, we have analyzed a wide array of tissues derived from different human compartments. NK cells were widely distributed in most solid tissues, although their amount varied significantly depending on the tissue/organ analyzed. Interestingly, the distribution appeared to be subset specific, as some tissues were preferentially populated by CD56brightperforinlow NK cells, with others by the CD56dimperforinhigh cytotoxic counterpart. Nevertheless, most tissues were highly enriched in CD56brightperforinlow cells, and the distribution of NK subsets appeared in accordance with tissue gene expression of chemotactic factors, for which receptors are differently represented in the two subsets. Remarkably, chemokine expression pattern of tissues was modified after neoplastic transformation. As a result, although the total amount of NK cells infiltrating the tissues did not significantly change upon malignant transformation, the relative proportion of NK subsets infiltrating the tissues was different, with a trend toward a tumor-infiltrating NK population enriched in noncytotoxic cells. Besides solid tissues, CD56brightperforinlow NK cells were also detected in seroma fluids, which represents an accrual of human afferent lymph, indicating that they may leave peripheral solid tissues and recirculate to secondary lymphoid organs via lymphatic vessels. Our results provide a comprehensive mapping of NK cells in human tissues, demonstrating that discrete NK subsets populate and recirculate through most human tissues and that organ-specific chemokine expression patterns might affect their distribution. In this context, chemokine switch upon neoplastic transformation might represent a novel mechanism of tumor immune escape.


Nature Communications | 2015

NCR + ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures

Paolo Carrega; Fabrizio Loiacono; Emma Di Carlo; Angelo Scaramuccia; Marco Mora; Romana Conte; Roberto Benelli; Grazia Maria Spaggiari; Claudia Cantoni; Stefania Campana; Irene Bonaccorsi; Barbara Morandi; Mauro Truini; Maria Cristina Mingari; Lorenzo Moretta; Guido Ferlazzo

Tertiary lymphoid structures (TLSs) are a common finding in non-small cell lung cancer (NSCLC) and are predictors of favourable clinical outcome. Here we show that NCR(+) innate lymphoid cell (ILC)-3 are present in the lymphoid infiltrate of human NSCLC and are mainly localized at the edge of tumour-associated TLSs. This intra-tumoral lymphocyte subset is endowed with lymphoid tissue-inducing properties and, on activation, produces IL-22, TNF-α, IL-8 and IL-2, and activates endothelial cells. Tumour NCR(+)ILC3 may interact with both lung tumour cells and tumour-associated fibroblasts, resulting in the release of cytokines primarily on engagement of the NKp44-activating receptor. In patients, NCR(+)ILC3 are present in significantly higher amounts in stage I/II NSCLC than in more advanced tumour stages and their presence correlate with the density of intratumoral TLSs. Our results indicate that NCR(+)ILC3 accumulate in human NSCLC tissue and might contribute to the formation of protective tumour-associated TLSs.


Journal of Translational Medicine | 2013

The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-α production.

Stefania Laurent; Paola Queirolo; Silvia Boero; Sandra Salvi; Patrizia Piccioli; Simona Boccardo; Simona Minghelli; A. Morabito; Vincenzo Fontana; Gabriella Pietra; Paolo Carrega; Nicoletta Ferrari; Francesca Tosetti; Lung Ji Chang; Maria Cristina Mingari; Guido Ferlazzo; Alessandro Poggi; Maria Pia Pistillo

BackgroundCTLA-4 (Cytotoxic T lymphocyte antigen-4) is traditionally known as a negative regulator of T cell activation. The blocking of CTLA-4 using human monoclonal antibodies, such as Ipilimumab, is currently used to relieve CTLA-4-mediated inhibition of anti-tumor immune response in metastatic melanoma. Herein, we have analyzed CTLA-4 expression and Ipilimumab reactivity on melanoma cell lines and tumor tissues from cutaneous melanoma patients. Then, we investigated whether Ipilimumab can trigger innate immunity in terms of antibody dependent cellular cytotoxicity (ADCC) or Tumor Necrosis Factor (TNF)-α release. Finally, a xenograft murine model was set up to determine in vivo the effects of Ipilimumab and NK cells on melanoma.MethodsCTLA-4 expression and Ipilimumab reactivity were analyzed on 17 melanoma cell lines (14 primary and 3 long-term cell lines) by cytofluorimetry and on 33 melanoma tissues by immunohistochemistry. CTLA-4 transcripts were analyzed by quantitative RT-PCR. Soluble CTLA-4 and TNF-α were tested by ELISA. Peripheral blood mononuclear cells (PBMC), NK and γδT cells were tested in ADCC assay with Ipilimumab and melanoma cell lines. TNF-α release was analyzed in NK-melanoma cell co-cultures in the presence of ipilimumab. In vivo experiments of xenotransplantation were carried out in NOD/SCID mice. Results were analyzed using unpaired Student’s t-test.ResultsAll melanoma cell lines expressed mRNA and cytoplasmic CTLA-4 but surface reactivity with Ipilimumab was quite heterogeneous. Accordingly, about 2/3 of melanoma specimens expressed CTLA-4 at different level of intensity.Ipilimumab triggered, via FcγReceptorIIIA (CD16), ex vivo NK cells as well as PBMC, IL-2 activated NK and γδT cells to ADCC of CTLA-4+ melanoma cells. No ADCC was detected upon interaction with CTLA-4- FO-1 melanoma cell line. TNF-α was released upon interaction of NK cells with CTLA-4+ melanoma cell lines. Remarkably, Ipilimumab neither affected proliferation and viability nor triggered ADCC of CTLA-4+ T lymphocytes. In a chimeric murine xenograft model, the co-engraftment of Ipilimumab-treated melanoma cells with human allogeneic NK cells delayed and significantly reduced tumor growth, as compared to mice receiving control xenografts.ConclusionsOur studies demonstrate that Ipilimumab triggers effector lymphocytes to cytotoxicity and TNF-α release. These findings suggest that Ipilimumab, besides blocking CTLA-4, can directly activate the elimination of CTLA-4+ melanomas.


International Immunology | 2009

NK cells provide helper signal for CD8+ T cells by inducing the expression of membrane-bound IL-15 on DCs

Barbara Morandi; Lorenzo Mortara; Paolo Carrega; Claudia Cantoni; Gregorio Costa; Roberto S. Accolla; Maria Cristina Mingari; Silvano Ferrini; Lorenzo Moretta; Guido Ferlazzo

NK cell recognition of cells that do not express or express low amounts of MHC class I molecules results not only in direct killing of target cells but also in the generation of specific T cell responses consequent to the induction of dendritic cell (DC) activation. While IL-12 production by NK cell-activated DCs is generally thought to play a critical role, a similar DC-mediated NK cell help has been reported also in IL-12-knockout mice. Here, we show that human NK cells can induce on DC surface membrane, via IFN-gamma secretion, the expression of high levels of IL-15. Remarkably, we show that DC expression of this membrane-bound form of IL-15, which is only partially associated with IL-15R molecules, is essential to promote specific CD8(+) T lymphocyte response in the absence of DC-derived IL-12.


Human Immunology | 2010

CTLA-4 is expressed by human monocyte— derived dendritic cells and regulates their functions

Stefania Laurent; Paolo Carrega; Daniele Saverino; Patrizia Piccioli; Marta Camoriano; A. Morabito; Beatrice Dozin; Vincenzo Fontana; Rita Simone; Lorenzo Mortara; Maria Cristina Mingari; Guido Ferlazzo; Maria Pia Pistillo

Cytotoxic T lymphocyte antigen-4 (CTLA-4) is the major negative regulator of T-cell responses, although growing evidence supports its wider role as an immune attenuator that may also act in other cell lineages. Here, we have analyzed the expression of CTLA-4 in human monocytes and monocyte-derived dendritic cells (DCs), and the effect of its engagement on cytokine production and T-cell stimulatory activity by mature DCs. CTLA-4 was highly expressed on freshly isolated monocytes, then down-modulated upon differentiation toward immature DCs (iDCs) and it was markedly upregulated on mature DCs obtained with different stimulations (lipopolysaccharides [LPS], Poly:IC, cytokines). In line with the functional role of CTLA-4 in T cells, treatment of mDCs with an agonistic anti-CTLA-4 mAb significantly enhanced secretion of regulatory interleukin (IL)-10 but reduced secretion of IL-8/IL-12 pro-inflammatory cytokines, as well as autologous CD4+ T-cell proliferation in response to stimulation with recall antigen purified protein derivative (PPD) loaded-DCs. Neutralization of IL-10 with an anti-IL-10 antibody during the mDCs-CD4+ T-cell co-culture partially restored the ability of anti-CTLA-4-treated mDCs to stimulate T-cell proliferation in response to PPD. Taken together, our data provide the first evidence that CTLA-4 receptor is expressed by human monocyte-derived mDCs upon their full activation and that it exerts immune modulatory effects.


PLOS ONE | 2009

Susceptibility of Human Melanoma Cells to Autologous Natural Killer (NK) Cell Killing: HLA-Related Effector Mechanisms and Role of Unlicensed NK Cells

Paolo Carrega; Gaetana Pezzino; Paola Queirolo; Irene Bonaccorsi; Michela Falco; Giuseppe Vita; Daniela Pende; Aldo Misefari; Alessandro Moretta; Maria Cristina Mingari; Lorenzo Moretta; Guido Ferlazzo

Background Despite Natural Killer (NK) cells were originally defined as effectors of spontaneous cytotoxicity against tumors, extremely limited information is so far available in humans on their capability of killing cancer cells in an autologous setting. Methodology/Principal Findings We have established a series of primary melanoma cell lines from surgically resected specimens and here showed that human melanoma cells were highly susceptible to lysis by activated autologous NK cells. A variety of NK cell activating receptors were involved in killing: particularly, DNAM-1 and NKp46 were the most frequently involved. Since self HLA class I molecules normally play a protective role from NK cell-mediated attack, we analyzed HLA class I expression on melanomas in comparison to autologous lymphocytes. We found that melanoma cells presented specific allelic losses in 50% of the patients analyzed. In addition, CD107a degranulation assays applied to NK cells expressing a single inhibitory receptor, revealed that, even when expressed, specific HLA class I molecules are present on melanoma cell surface in amount often insufficient to inhibit NK cell cytotoxicity. Remarkably, upon activation, also the so called “unlicensed” NK cells, i.e. NK cells not expressing inhibitory receptor specific for self HLA class I molecules, acquired the capability of efficiently killing autologous melanoma cells, thus additionally contributing to the lysis by a mechanism independent of HLA class I expression on melanoma cells. Conclusions/Significance We have investigated in details the mechanisms controlling the recognition and lysis of melanoma cells by autologous NK cells. In these autologous settings, we demonstrated an efficient in vitro killing upon NK cell activation by mechanisms that may be related or not to abnormalities of HLA class I expression on melanoma cells. These findings should be taken into account in the design of novel immunotherapy approaches against melanoma.

Collaboration


Dive into the Paolo Carrega's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorenzo Moretta

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Cantoni

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabrielle Lui

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge