Barbara Panicucci
University of Pisa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Panicucci.
IEEE Transactions on Services Computing | 2012
Danilo Ardagna; Barbara Panicucci; Marco Trubian; Li Zhang
With the increase of energy consumption associated with IT infrastructures, energy management is becoming a priority in the design and operation of complex service-based systems. At the same time, service providers need to comply with Service Level Agreement (SLA) contracts which determine the revenues and penalties on the basis of the achieved performance level. This paper focuses on the resource allocation problem in multitier virtualized systems with the goal of maximizing the SLAs revenue while minimizing energy costs. The main novelty of our approach is to address-in a unifying framework-service centers resource management by exploiting as actuation mechanisms allocation of virtual machines (VMs) to servers, load balancing, capacity allocation, server power state tuning, and dynamic voltage/frequency scaling. Resource management is modeled as an NP-hard mixed integer nonlinear programming problem, and solved by a local search procedure. To validate its effectiveness, the proposed model is compared to top-performing state-of-the-art techniques. The evaluation is based on simulation and on real experiments performed in a prototype environment. Synthetic as well as realistic workloads and a number of different scenarios of interest are considered. Results show that we are able to yield significant revenue gains for the provider when compared to alternative methods (up to 45 percent). Moreover, solutions are robust to service time and workload variations.
international world wide web conferences | 2011
Danilo Ardagna; Barbara Panicucci
Cloud computing is an emerging paradigm which allows the on-demand delivering of software, hardware, and data as services. As cloud-based services are more numerous and dynamic, the development of efficient service provisioning policies become increasingly challenging. Game theoretic approaches have shown to gain a thorough analytical understanding of the service provisioning problem. In this paper we take the perspective of Software as a Service (SaaS) providers which host their applications at an Infrastructure as a Service (IaaS) provider. Each SaaS needs to comply with quality of service requirements, specified in Service Level Agreement (SLA) contracts with the end-users, which determine the revenues and penalties on the basis of the achieved performance level. SaaS providers want to maximize their revenues from SLAs, while minimizing the cost of use of resources supplied by the IaaS provider. Moreover, SaaS providers compete and bid for the use of infrastructural resources. On the other hand, the IaaS wants to maximize the revenues obtained providing virtualized resources. In this paper we model the service provisioning problem as a Generalized Nash game, and we propose an efficient algorithm for the run time management and allocation of IaaS resources to competing SaaSs.
IEEE Transactions on Services Computing | 2013
Danilo Ardagna; Barbara Panicucci
In recent years, the evolution and the widespread adoption of virtualization, service-oriented architectures, autonomic, and utility computing have converged letting a new paradigm to emerge: cloud computing. Clouds allow the on-demand delivering of software, hardware, and data as services. Currently, the cloud offer is becoming wider day by day because all the major IT companies and service providers, like Microsoft, Google, Amazon, HP, IBM, and VMWare, have started providing solutions involving this new technological paradigm. As cloud-based services are more numerous and dynamic, the development of efficient service provisioning policies becomes increasingly challenging. In this paper, we take the perspective of Software as a Service (SaaS) providers that host their applications at an Infrastructure as a Service (IaaS) provider. Each SaaS needs to comply with quality-of-service requirements, specified in service-level agreement (SLA) contracts with the end users, which determine the revenues and penalties on the basis of the achieved performance level. SaaS providers want to maximize their revenues from SLAs, while minimizing the cost of use of resources supplied by the IaaS provider. Moreover, SaaS providers compete and bid for the use of infrastructural resources. On the other hand, the IaaS wants to maximize the revenues obtained providing virtualized resources. In this paper, we model the service provisioning problem as a generalized Nash game and we show the existence of equilibria for such game. Moreover, we propose two solution methods based on the best-reply dynamics, and we prove their convergence in a finite number of iterations to a generalized Nash equilibrium. In particular, we develop an efficient distributed algorithm for the runtime allocation of IaaS resources among competing SaaS providers. We demonstrate the effectiveness of our approach by simulation and performing tests on a real prototype environment deployed on Amazon EC2. Results show that, compared to other state-of-the-art solutions, our model can improve the efficiency of the cloud system evaluated in terms of Price of Anarchy by 50-70 percent.
international conference on cloud computing | 2010
Bernardetta Addis; Danilo Ardagna; Barbara Panicucci; Li Zhang
Modern cloud infrastructures live in an open world, characterized by continuous changes in the environment and in the requirements they have to meet. Continuous changes occur autonomously and unpredictably, and they are out of control of the cloud provider. Therefore, advanced solutions have to be developed able to dynamically adapt the cloud infrastructure, while providing continuous service and performance guarantees. A number of autonomic computing solutions have been developed such that resources are dynamically allocated among running applications on the basis of short-term demand estimates. However, only performance and energy trade-off have been considered so far with a lower emphasis on the infrastructure dependability/availability which has been demonstrated to be the weakest link in the chain for early cloud providers. The aim of this paper is to fill this literature gap devising resource allocation policies for cloud virtualized environments able to identify performance and energy trade-offs, providing a priori availability guarantees for cloud end-users.
IEEE Transactions on Dependable and Secure Computing | 2013
Bernardetta Addis; Danilo Ardagna; Barbara Panicucci; Mark S. Squillante; Li Zhang
Worldwide interest in the delivery of computing and storage capacity as a service continues to grow at a rapid pace. The complexities of such cloud computing centers require advanced resource management solutions that are capable of dynamically adapting the cloud platform while providing continuous service and performance guarantees. The goal of this paper is to devise resource allocation policies for virtualized cloud environments that satisfy performance and availability guarantees and minimize energy costs in very large cloud service centers. We present a scalable distributed hierarchical framework based on a mixed-integer nonlinear optimization of resource management acting at multiple timescales. Extensive experiments across a wide variety of configurations demonstrate the efficiency and effectiveness of our approach.
Journal of Parallel and Distributed Computing | 2012
Danilo Ardagna; Sara Casolari; Michele Colajanni; Barbara Panicucci
Resource management remains one of the main issues of cloud computing providers because system resources have to be continuously allocated to handle workload fluctuations while guaranteeing Service Level Agreements (SLA) to the end users. In this paper, we propose novel capacity allocation algorithms able to coordinate multiple distributed resource controllers operating in geographically distributed cloud sites. Capacity allocation solutions are integrated with a load redirection mechanism which, when necessary, distributes incoming requests among different sites. The overall goal is to minimize the costs of allocated resources in terms of virtual machines, while guaranteeing SLA constraints expressed as a threshold on the average response time. We propose a distributed solution which integrates workload prediction and distributed non-linear optimization techniques. Experiments show how the proposed solutions improve other heuristics proposed in literature without penalizing SLAs, and our results are close to the global optimum which can be obtained by an oracle with a perfect knowledge about the future offered load.
international conference on cloud computing | 2011
Danilo Ardagna; Sara Casolari; Barbara Panicucci
In Cloud computing systems, resource management is one of the main issues. Indeed, in any time instant resources have to be allocated to handle effectively workload fluctuations, while providing Quality of Service (QoS) guarantees to the end users. In such systems, workload prediction-based autonomic computing techniques have been developed. In this paper we propose capacity allocation techniques able to coordinate multiple distributed resource controllers working in geographically distributed cloud sites. Furthermore, capacity allocation solutions are integrated with a load redirection mechanism which forwards incoming requests between different domains. The overall goal is to minimize the costs of the allocated virtual machine instances, while guaranteeing QoS constraints expressed as a threshold on the average response time. We compare multiple heuristics which integrate workload prediction and distributed non-linear optimization techniques. Experimental results show how our solutions significantly improve other heuristics proposed in the literature (5-35% on average), without introducing significant QoS violations.
European Conference on a Service-Based Internet | 2010
Danilo Ardagna; Carlo Ghezzi; Barbara Panicucci; Marco Trubian
Cloud computing represents a new way to deliver and use services on a shared IT infrastructure. Traditionally, IT hardware and software were acquired and provisioned on business premises. Software applications were built, possibly integrating off-the-shelf components, deployed and run on these privately owned resources. With service-oriented computing, applications are offered by service providers to clients, who can simply invoke them through the network. The offer specifies both the functionality and the Quality of Service (QoS). Providers are responsible for deploying and running services on their own resources. Cloud computing moves one step further. Computing facilities can also be delivered on demand in the form of services over a network. In this paper we take the perspective of a Software as a Service (SaaS) provider whose goal is to maximize the revenues from end users who access services on a pay-per-use basis. In turn, the SaaS provider exploits the cloud, which provides an Infrastructure as a Service (IaaS), where the service provider dynamically allocates hardware physical resources.
Optimization Methods & Software | 2010
Giancarlo Bigi; Barbara Panicucci
An algorithm for solving nonsmooth monotone variational inequalities subject to linear constraints is proposed. Combining a cutting plane procedure for strictly monotone variational inequalities with the Tikhonov regularization technique, we devise an algorithm based on successive linear programming. Preliminary numerical results are reported.
Taiwanese Journal of Mathematics | 2009
Giandomenico Mastroeni; Barbara Panicucci; Jen-Chih Yao