Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Pawłowska is active.

Publication


Featured researches published by Barbara Pawłowska.


Journal of Hazardous Materials | 2014

The role of the anion in the toxicity of imidazolium ionic liquids.

Robert Biczak; Barbara Pawłowska; Piotr Bałczewski; Piotr Rychter

From the environmental protection point of view, the growing interest of ionic liquids in various industrial branches has raised concerns for the toxicity assessment of these compounds. The paper discusses the effect of salts containing the shared 1-ethyl-3-methylimidazolium [EMIM] cation as coupled with five different anions: bromide [Br], nitrate [NO3], p-toluenesulfonate (tosylate) [Ts], dimethylphosphate [dMP] and methanesulfonate [MS] on the growth and development of higher land plants - spring barley and common radish. The experiment was done according to the ISO Standard 11269-2:1995 and the OECD/OCDE Guide 208/2006. As the indications of phytotoxicity, the percentage of sprouts and the level of dry and fresh plant mass were used; in addition, the visual assessment of any signs of damage to the examined plant species, such as growth inhibition and chlorotic changes, was also made. Results of our study has proved the negative impact of ILs on the tested plants and the toxic effect of imidazolium salts was dependent primarily on the applied ionic liquids concentration. The common radish revealed the higher tolerance to the imidazolium as compared to spring barley. The anion type of ionic liquid was crucial for the toxicity against common radish.


Chemosphere | 2016

Evaluation of the effect of tetraethylammonium bromide and chloride on the growth and development of terrestrial plants.

Barbara Pawłowska; Robert Biczak

Quaternary ammonium salts (QAS), which also include ionic liquids, constitute a vast group of chemical compounds that are increasingly common in the commercial use. This situation may lead to the contamination of the natural environment and may constitute a potential threat to all its elements, including terrestrial higher plants. This paper presents the effect of tetraethylammonium chloride [TEA][Cl] and tetraethylammonium bromide [TEA][Br] on the growth and development of spring barley and common radish. The applied QAS were characterized with phytotoxicity dependent on the concentration of compound and characteristics of the study plants. Spring barley turned out to be highly susceptible plant to the analyzed compounds, which was confirmed by % inhibition of length of plants, root length and fresh weight of plants and by calculated values for EC50, NOEC as well as LOEC. On the contrary, a common radish revealed the resistance to QAS used in the study; although, phytotoxic symptoms were still observed when high concentrations of dry weight of soil were applied (1000, 3000 and 5000 mg/kg). The applied QAS caused oxidative stress symptoms, mainly in spring barley seedlings, which were manifested by decreased assimilation of pigments content, increased hydrogen peroxide (H2O2) and malondialdehyde (MDA) content in plant cells and with a changed activity of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD).


Ecological Chemistry and Engineering S-chemia I Inzynieria Ekologiczna S | 2014

Comparison of Phytotoxicity of Selected Phosphonium Ionic Liquid

Robert Biczak; Piotr Bałczewski; Barbara Pawłowska; Barbara Bachowska; Piotr Rychter

Abstract Ionic liquids have attracted considerable interest in various areas as new, non-volatile and non-flammable organic solvents, catalysts, reaction additives, ligands, drugs and other dedicated materials etc. Their general use, sometimes in bulky quantities, requires determination of their potential ecotoxicity on selected organisms. In the present work, influence of triphenylmethylphosphonium iodide (1) and triphenylhexadecylphosphonium iodide (2), introduced to soil, on germination and early stages of growth and development of superior plants was investigated using the plant growth test based on the OECD/OCDE 208/2006. In this test, the seeds of selected species, i.e. land superior plants - spring barley (Hordeum vulgare) and common radish (Raphanus sativus L. subvar. radicula Pers.) were planted in pots containing soil to which a test chemical compound had been added and in pots with control soil. To evaluate the phytotoxicity of ionic liquids 1 and 2 germination and weight (dry and fresh) of control plant seedlings were determined and compared with the germination and weight (dry and fresh) of the seedlings of plants grown in the soil watered with appropriate amounts of the test chemicals. The visual assessment of any types of damage to the test species, such as growth inhibition, chlorosis and necrosis, was also carried out and documented by digital photographs. Based on the obtained results, magnitudes of the LOEC - the lowest concentration causing observable effects in the form of reduction in growth and germination compared with the control and the NOEC - the highest concentration not causing observable, toxic effects - were also determined.


Environmental Science and Pollution Research | 2015

The phytotoxicity of ionic liquids from natural pool of (-)-menthol with tetrafluoroborate anion.

Robert Biczak; Barbara Pawłowska; Joanna Feder-Kubis

Over the last several decades, ionic liquids have become a promising alternative to conventional organic solvents. Initially, ionic liquids were described as “environmentally friendly” substances. However, the results of numerous studies proved that the effects of these compounds on individual ecosystems might be adverse. The presented paper discusses the effect of ionic salts containing natural chiral substituent: (1R,2S,5R)-(−)-menthol in cation and a tetrafluoroborate anion of a general formula of [Cn-Im-Men][BF4] of implementation into the soil on the growth of spring barley and common radish in their early development stages. The obtained results showed that the greatest phytotoxicity was exhibited by ionic liquids containing substituents with the smallest possible number of carbon atoms. The further increase in the length of the chain did not increase the toxicity of these salts for terrestrial plants. Moreover, a compound with a substituent having a chain length of 11 carbon atoms was found to be non-toxic to common radish. The experiment under discussion showed also the effect of these tetrafluoroborates, used in the form of spray, on the development of common sorrel, gallant soldier and white goosefoot. The tests carried out also showed that the most toxic were the compounds with 1 and 3 carbon atoms. The phytotoxicity of tetrafluoroborates was positively correlated with the concentration of these compounds in the soil and was dependent on the genetic features of the genres and varieties of plants used in the experiment.


Chemosphere | 2016

The effect of the number of alkyl substituents on imidazolium ionic liquids phytotoxicity and oxidative stress in spring barley and common radish seedlings.

Robert Biczak; Barbara Pawłowska; Arkadiusz Telesiński; Wojciech Ciesielski

Increasing amounts of two ILs: 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] and 1-butyl-2,3-dimethylimidazolium hexafluorophosphate [BMMIM][PF6], were introduced to soil in which spring barley (Hordeum vulgare) and common radish (Raphanus sativus L. subvar. radicula Pers.) seedlings were cultivated, in order to evaluate the phytotoxicity of ionic liquids with imidazolium cation with two or three alkyl substituents attached. The results of the study i.e. the inhibition of the length of plants and their roots, as well as the yield of fresh weight of plants, clearly showed that differences in the number of substituents did not affect the toxicity of these ILs. Although, radish was more resistant to the applied ionic liquids than barley. Ionic liquids led to a decrease in the content of all assimilation pigments and induced oxidative stress in the plants, as showed by an increase in malondialdehyde (MDA) content, and changes in the level of H2O2 and antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). The best biomarkers of oxidative stress in both plants were the changes in chlorophyll content and the increase in POD activity. Both spring barley and radish exposed to [BMIM][PF6] and [BMMIM][PF6] accumulated a large amount of fluoride ions, which further increased the toxicity of these compounds for both plants.


Phosphorus Sulfur and Silicon and The Related Elements | 2013

Phytotoxicity and Cytotoxicity of Imidazolium Ionic Liquids Containing Sulfur Atom

Robert Biczak; Piotr Bałczewski; Barbara Bachowska; Barbara Pawłowska; Julia Kazmierczak-Baranska; Marcin Cieslak; Barbara Nawrot

Abstract Ionic liquids have attracted considerable interest in various areas as new, nonvolatile and nonflammable organic solvents, catalysts, reaction additives, ligands, drugs, and other dedicated materials. Ionic liquids exhibit solubility both in organic solvents and in water. They also constitute very good solvents for many inorganic, organic, and organometallic compounds. Yet, the most important feature of ionic liquids is that they provide the possibility of obtaining substances of optimal properties for a given process through modification of the cation structure and selection of the appropriate anion. Therefore, the term designer solvents has been invented for these salts. The above characteristics and relatively low production cost may soon lead to the situation, in which huge amounts of these chemicals will be brought into environment via industry, agriculture, and commercial trading. Their general use, sometimes in bulky quantities, requires determination of their potential ecotoxicity on selected plant and animal organisms. Other biological tests, are also very important. GRAPHICAL ABSTRACT


Ecotoxicology and Environmental Safety | 2017

Growth inhibition and efficiency of the antioxidant system in spring barley and common radish grown on soil polluted ionic liquids with iodide anions

Robert Biczak; Martyna Śnioszek; Arkadiusz Telesiński; Barbara Pawłowska

Ionic liquids (ILs) constitute a huge group of substances that are increasingly common in the commercial use. This situation may lead to the contamination of the soil environment which being the basic of plants vegetation. This paper presents the effect of four ILs with I- anion on the growth and development of spring barley (Hordeum vulgare) and common radish (Raphanus sativus L. subvar. radicula Pers) and changes in metabolism of the plants. Seedlings of spring barley and common radish cultivated on soil with increasing ILs concentration exhibited typical phytotoxicity symptoms. A considerable reduction of shoot and root lengths, decrease of fresh weight (FW) and increase of dry weight (DW) occurred in both test plants. Ionic liquids concentration increase in soil was correlated with the decrease of concentrations of all photosynthetic pigments in the plants. The observed increase of malondialdehyde (MDA) concentration and changes in the H2O2 level indicated presence of oxidative stress in spring barley and common radish, which usually led to the increase of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activity. The most reliable biomarker of oxidative stress was chlorophyll level and changes in POD activity.


Journal of Agricultural and Food Chemistry | 2017

Reaction of Spring Barley and Common Radish on the Introduction of Ionic Liquids Containing Asymmetric Cations to the Soil

Barbara Pawłowska; Arkadiusz Telesiński; Maciej Płatkowski; Michał Stręk; Martyna Śnioszek; Robert Biczak

The harmful effect of ionic liquids (ILs) on the environment is one of the important elements of scientific research conducted around the world. This study presents the effect of ionic liquids, containing the asymmetric cations benzyltrimethylammonium chloride [BenzTMA][Cl] and benzyltriethylammonium chloride [BenzTEA][Cl], on physiological and biochemical changes in common radish plants and spring barley seedlings. The examined ILs demonstrated low toxicity to higher plants. The compound that exhibited higher phytotoxicity to these plant species was [BenzTMA][Cl], whereas the plant that was more resistant to such ILs was common radish. Both the ionic liquids, particularly at higher concentrations, led to changes in the metabolism of plants, which resulted in a decrease of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids content. The observed changes were positively correlated with increasing concentrations of the examined ILs in the soil. In the case of spring barley, a decrease in the fresh weight and an increase in the dry weight of the seedlings were also observed. The evidence of oxidative stress occurrence in spring barley was observed due to the accumulation of malondialdehyde and free proline, as well as due to an increase in the activity of catalase and peroxidase. The changes in these biomarkers indicating oxidative stress occurrence in common radish plants were much lower. An increase in the content of chloride ions was observed in both the plants.


Bulletin of Environmental Contamination and Toxicology | 2017

Effect of Quaternary Ammonium Salts with Fluorine Atoms on Selected Weed Species

Robert Biczak; Barbara Pawłowska; Maciej Płatkowski; Michał Stręk; Arkadiusz Telesiński

This study investigated the effects of four structurally different quaternary ammonium salts (QASs), i.e., tetrabutylammonium tetrafluoroborate [TBA][BF4], tetrahexylammonium tetrafluoroborate [THA][BF4], tetrabutylammonium hexafluorophosphate [TBA][PF6], and tetrahexylammonium hexafluorophosphate [THA][PF6], on the growth and development of three weed species: gallant soldier (Galinsoga parviflora Cav.), white goosefoot (Chenopodium album L.) and common sorrel (Rumex acetosa L.). The examined compounds were applied in the form of foliar spraying and soil application. Strong herbicidal properties of the examined compounds were demonstrated in case of their soil application. Growth inhibition of plant shoots and roots was greater with soil application than with foliar treatment. The strongest herbicidal activity of compounds was demonstrated with [TBA][BF4] have demonstrated [TBA][BF4] and [TBA][PF6] applied to the soil, while [THA][BF4] demonstrated the weakest herbicidal action. The increased concentration of applied QASs caused a decrease in the assimilation pigments, change in dry weight content and inhibition of length of shoots and roots.


Journal of Ecological Engineering | 2017

RESPONSE OF SOIL PHOSPHATASES TO THREE DIFFERENT IONIC LIQUIDS WITH HEXAFLUOROPHOSPHATE ANION

Arkadiusz Telesiński; Martyna Śnioszek; Robert Biczak; Barbara Pawłowska

The aim of this study was to determine the effect of three different ionic liquids (ILs): 1-butyl-1-methylpyrrolidynium hexafluorophosphate [Pyrrol][PF6], 1-butyl-1-methylpiperydynium hexafluorophosphate [Piper][PF6] and 1-butyl-4-methylopirydynium hexafluorophosphate [Piryd][PF6] on phosphatase activities in soil. The pot experiment was carried out on loamy sand (Corg content 9.0 g/kg) with spring barley as a tested plant. The ILs was used at the dosages of 0, 1, 10, 50, 100, 400, 700 and 1000 mg/kg dry matter (DM). On day 14, soil samples were collected and activities of alkaline phosphomonoesterase, acid phosphomonoesterase, phosphotriesterase and inorganic pyrophosphatase were determined. Based on the analysis of the effect measure η2 by variance analysis – ANOVA – the percentage shares of all variable factors affecting the activity of phosphatases were also defined. Obtained results showed that the application of different dosages of all ILs caused mainly non-significant changes in phosphatase activity. Changes in activity of phosphatases were often not dependent on IL dosages. The most sensitive for ILs were both phosphomonoesterases. The type of ILs had the highest percentage participation in formation of acid phosphomonoesterase activity, while dosages of ILs affected mainly alkaline phosphomonoesterase and phosphotriesterase activities.

Collaboration


Dive into the Barbara Pawłowska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arkadiusz Telesiński

West Pomeranian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Piotr Bałczewski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Martyna Śnioszek

West Pomeranian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Joanna Feder-Kubis

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maciej Płatkowski

West Pomeranian University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanna Skalik

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge