Barbara Zięba
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Zięba.
European Journal of Neuroscience | 2005
Krystyna Ossowska; Jadwiga Wardas; Maria Śmiałowska; Katarzyna Kuter; T. Lenda; Joanna M. Wierońska; Barbara Zięba; Przemysław Nowak; J. Dąbrowska; A. Bortel; A. Kwieciński; S. Wolfarth
The aim of the present study was to examine the influence of the long‐term paraquat administration on the dopaminergic nigrostriatal system in rats. Paraquat was injected at a dose of 10 mg/kg i.p. for 4–24 weeks. We found that this pesticide reduced the number of tyrosine hydroxylase‐immunoreactive neurons of the substantia nigra; after the 4‐week treatment the reduction (17%, nonsignificant) was confined to the rostrocentral region of this structure but, after 24 weeks, had spread along its whole length and was ≈ 37%. Moreover, it induced a biphasic effect on dopaminergic transmission. First, levels of dopamine, its metabolites and turnover were elevated (4–8 weeks) in the caudate–putamen, then all these parameters returned to control values (12 weeks) and dropped by 25–30% after 24 weeks. The binding of [3H]GBR 12,935 to dopamine transporter in the caudate–putamen was decreased after 4–8 weeks, then returned to control values after 12 weeks but was again decreased after 24 weeks. Twenty‐four‐week paraquat administration also decreased the level of tyrosine hydroxylase (Western blot) in the caudate–putamen. In addition, paraquat activated serotonin and noradrenaline transmission during the first 12 weeks of treatment but no decreases in levels of these neurotransmitters were observed after 24 weeks. The above results seem to suggest that long‐term paraquat administration produces a slowly progressing degeneration of nigrostriatal neurons, leading to delayed deficits in dopaminergic transmission, which may resemble early, presymptomatic, stages of Parkinsons disease.
Brain Research | 2007
Katarzyna Kuter; Maria Śmiałowska; Joanna M. Wierońska; Barbara Zięba; Jadwiga Wardas; Małgorzata Pietraszek; Przemysław Nowak; Izabela Biedka; Wojciech Roczniak; Jolanta Konieczny; S. Wolfarth; Krystyna Ossowska
Paraquat is a toxin suggested to contribute to pathogenesis of Parkinsons disease. The aim of the present study was to examine toxic influence of subchronic treatment with this pesticide (5 days, one injection per day, 2-3 days of withdrawal) on dopaminergic, serotonergic, noradrenergic and GABAergic neurons. Paraquat decreased the number of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the substantia nigra by 22% (measured 3 days after withdrawal). Two days after withdrawal the levels of the dopamine metabolites and dopamine turnover in the caudate-putamen, substantia nigra and prefrontal cortex were reduced by ca. 20-60%, and the binding of [(3)H]GBR 12,935 to dopamine transporter dropped by 25-40% in the caudate-putamen. Three days after paraquat withdrawal, the level of dopamine in the caudate-putamen was significantly increased, and earlier decreases in DOPAC and HVA in the substantia nigra, as well as [(3)H]GBR 12,935 binding in the caudate-putamen were reversed. Moreover, an increase in serotonin turnover in the caudate-putamen and prefrontal cortex, and noradrenaline level in the former structure was observed 2-3 days after paraquat withdrawal. Three days after the last paraquat injection 24-35% decreases in the proenkephalin mRNA levels and 5-7% reduction in glutamic acid decarboxylase (GAD)67 mRNA were found in the caudate-putamen. The present study suggests that subchronic paraquat administration triggers processes characteristic of early stages of dopaminergic neuron degeneration, and activates compensatory mechanisms involving dopaminergic, noradrenergic, serotonergic and GABAergic transmissions.
Neuroscience | 2006
Krystyna Ossowska; Maria Śmiałowska; Katarzyna Kuter; Joanna M. Wierońska; Barbara Zięba; Jadwiga Wardas; Przemysław Nowak; J. Dąbrowska; A. Bortel; Izabela Biedka; G. Schulze; Hans Rommelspacher
A deficiency of the dopaminergic transmission in the mesocortical system has been suggested to contribute to cognitive disturbances in Parkinsons disease. Therefore, the aim of the present study was to examine whether the long-term administration of a commonly used herbicide, paraquat, which has already been found to induce a slowly progressing degeneration of the nigrostriatal neurons, influences mesocortical dopaminergic neurons in rats. Paraquat at a dose of 10 mg/kg i.p. was injected either acutely or once a week for 4, 8, 12 and 24 weeks. Acute treatment with this pesticide increased the level of homovanillic acid (HVA) and HVA/dopamine ratio in the prefrontal cortex. After 8 weeks of administration paraquat increased the number of stereologically counted tyrosine hydroxylase-immunoreactive (TH-ir) neurons and their staining intensity in the ventral tegmental area (VTA), which is a source of the mesocortical dopaminergic projection. At the same time, few TH-ir neurons appeared in different regions of the cerebral cortex: in the frontal, cingulate, retrosplenial and parietal cortices. Chronic paraquat administration did not influence the level of dopamine in the prefrontal cortex but increased the levels of its metabolites: 3,4-dihydroxyphenylacetic acid (after 8-12 weeks), HVA (after 4 and 12 weeks) and HVA/dopamine ratio (4 weeks). After 24 weeks this pesticide reduced the number of TH-ir neurons in the VTA by 42% and of the Nissl-stained neurons by 26%, and induced shrinkage of this structure by ca. 25%. Moreover, TH-ir neurons in the cortex were no more visible after such a long period of administration and levels of dopamine metabolites returned to control values. The present results suggest that the long-term paraquat administration destroys dopaminergic neurons of the VTA. However, compensatory activation of the VTA neurons and cortex overcomes progressing degeneration and maintains cortical dopaminergic transmission.
Neuropeptides | 2009
Maria Śmiałowska; Helena Domin; Barbara Zięba; Ewa Koźniewska; Radosław Michalik; Piotr C. Piotrowski; Małgorzata Kajta
It is generally assumed that neurodegeneration is connected with glutamatergic hyperactivity, and that neuropeptide Y (NPY) inhibits glutamate release. Some earlier studies indicated that NPY may have neuroprotective effect; however, the results obtained so far are still divergent, and the role of different Y receptors remains unclear. Therefore in the presented study we investigated the neuroprotective potential of NPY and its Y2, Y5 or Y1 receptor (R) ligands against the kainate (KA)-induced excitotoxicity in neuronal cultures in vitro, as well as in vivo after intrahippocampal KA injection and also in an ischemic middle cerebral artery occlusion model after intraventricular injection of Y2R agonist. NPY compounds were applicated 30 min, 1, 3 or 6 h after the start of the exposure to KA, or 30 min after the onset of ischemia. Our results indicate the neuroprotective activity of NPY and its Y2R and Y5R ligands against the kainate-induced excitotoxicity in primary cortical and hippocampal cultures. Importantly, NPY was effective when given as late as 6 h, while Y2R or Y5R agonists 3 h, after starting the exposure to KA. In in vitro studies those protective effects were inhibited by the respective receptor antagonists. Neuroprotection was also observed in vivo after intrahippocampal injection of Y2R and Y5R agonists 30 min or 1 h after KA. No protection was found either in vitro or in vivo after the Y1R agonist. The Y2R agonist also showed neuroprotective activity in the ischemic model. The obtained results indicate that neuropeptide Y produces neuroprotective effect via Y2 and Y5 receptors, and that the compounds may be effective after delayed application.
Neuropeptides | 2008
Barbara Zięba; Małgorzata Grzegorzewska; Piotr Brański; Helena Domin; Joanna M. Wierońska; G Hess; Maria Śmiałowska
Corticotropin releasing factor (CRF) is a neuropeptide widely distributed in the brain. The role of CRF in the behavioural activity and modulation of anxiety states in several brain structures has been well documented, but its function in the cerebral cortex still remains unknown. The aim of our study was to investigate the effect of CRF injected bilaterally into rat frontal cortex on the locomotor and exploratory activity and anxiety of rats. We also examined the effect of CRF on extracellularly recorded field potentials in rat frontal cortical slices in vitro. Behavioural experiments showed that CRF in doses of 0.05, 0.1, 0.2 microg/1 microl/site decreased locomotor and exploratory activity during a 40-min session in the open field test. In the elevated plus-maze test, CRF in a dose of 0.2 microg/1 microl/site produced a significant anxiolytic-like effect, which was prevented by CRF receptor antagonists (alpha-helicalCRF(9-41) and NBI 27914). Electrophysiological experiments showed that CRF-induced a transient depression of field potentials in slices partly disinhibited by GABA(A) and GABA(B) receptors antagonists. The blockade of NMDA receptors prevented the occurrence of that effect. The obtained results suggest that CRF may have anxiolytic-like effects in the frontal cortex. Moreover, the peptide inhibits locomotor and exploratory activity and depresses excitatory synaptic transmission in a NMDA receptor-dependent manner.
Pharmacological Reports | 2010
Helena Domin; Barbara Zięba; Krystyna Gołembiowska; Magdalena Kowalska; Anna Dziubina; Maria Śmiałowska
Extensive research into glutamate receptors in the central nervous system has shown important role of metabotropic glutamate receptors (mGluR) as potential targets for neuroprotective drugs. The aim of the present study was to investigate neuroprotective potential of the highly selective mGlu5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) against kainate (KA)-induced excitotoxicity in vivo. Our attention was focused mainly on the effectiveness of delayed treatment. In order to evoke neuronal injury, rats were unilaterally injected with kainic acid (KA; 2.5 nmol/1 μl) into the CA1 region of the hippocampus. MTEP (1, 5 or 10 nmol/1 μl) was administered into CA1 30 min, 1, 3 and 6 h after KA. Additionally, other rats were injected intraperitoneally (i.p.) with MTEP in a dose of 1 mg/kg, once daily for 7 days. The first injection of MTEP was 1 h after KA. Seven days after treatment, the brains were taken out and analyzed histologically to estimate the total number of neurons in CA region of dorsal hippocampus using stereological methods. The study was also aimed at determining a possible influence of MTEP on neuronal glutamate release induced by KA in the hippocampus, using microdialysis method. The obtained results showed that MTEP had neuroprotective effect after both intrahippocampal and intraperitoneal injection. It was found that MTEP could prevent excitotoxic neuronal damage even when it was applied 1-6 h after the toxin. Moreover, it was observed that MTEP significantly reduced the KA-induced glutamate release in the hippocampus. It seems to play a role in mediating neuroprotective effects of MTEP.
Neuroscience | 2008
Elżbieta Lorenc-Koci; Lucyna Antkiewicz-Michaluk; A. Kamińska; Tomasz Lenda; Barbara Zięba; Joanna M. Wierońska; Maria Śmiałowska; G. Schulze; Hans Rommelspacher
The contribution of (R)-enantiomer of N-methyl-salsolinol (1,2-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline; NMSal) to the degeneration of dopaminergic neurons in the course of Parkinsons disease (PD) has been predominantly suggested by in vitro experiments in cell culture and by an in vivo study in which this compound has been directly injected into the rat striatum. The aim of the present study was to examine the effects of racemic NMSal (50 and 100 mg/kg) administered systemically, acutely and chronically for 21 days to rats, on the neurochemical and behavioral markers of PD. Our results showed that racemic NMSal easily penetrated the blood-brain barrier. Its brain level was relatively high 2-6 h after a single injection than gradually decreased. NMSal was quickly eliminated from the rat brain, its concentration 24 h after withdrawal from chronic treatment was very low. NMSal at both examined doses did not affect striatal and nigral levels of dopamine (DA) 2 h after the first and last chronic injections, however, it markedly changed DA catabolism. In the striatum both its doses evoked a significant acceleration of the total and oxidative, monoamine oxidase (MAO)-dependent DA catabolism without affecting the catechol-O-methyltransferase (COMT)-dependent O-methylation. In the substantia nigra (SN), only the higher dose of NMSal produced such effect. DA catabolism in either structure was the same as in control 24 h after cessation of chronic treatment. The second characteristic marker of PD, the number of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the SN, was not affected by chronic NMSal treatment as revealed by the stereological counting. In the behavioral study, it was found that racemic NMSal significantly suppressed spontaneous locomotor activity and effectively prevented that stimulated by apomorphine. Our results suggest that NMSal may play an important role in the regulation of dopaminergic activity rather than in inducing changes of parkinsonian type.
Pharmacological Reports | 2010
Catrin Wernicke; Julian Hellmann; Barbara Zięba; Katarzyna Kuter; Krystyna Ossowska; Monika Frenzel; Norbert A. Dencher; Hans Rommelspacher
Pharmacological Reports | 2005
Joanna M. Wierońska; Bernadeta Szewczyk; Pałucha A; Piotr Brański; Barbara Zięba; Smiałowska M
Neurotoxicity Research | 2012
Maria Śmiałowska; Krystyna Gołembiowska; Małgorzata Kajta; Barbara Zięba; Anna Dziubina; Helena Domin