Barbara Zimmermann
Hedmark University College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Zimmermann.
The American Naturalist | 2012
Richard Bischof; Leif Egil Loe; Erling L. Meisingset; Barbara Zimmermann; Bram Van Moorter; Atle Mysterud
The forage-maturation hypothesis (FMH) states that herbivores migrate along a phenological gradient of plant development in order to maximize energy intake. Despite strong support for the FMH, the actual relationship between plant phenology and ungulate movement has remained enigmatic. We linked plant phenology (MODIS–normalized difference vegetation index [NDVI] data) and space use of 167 migratory and 78 resident red deer (Cervus elaphus), using a space-time-time matrix of “springness,” defined as the instantaneous rate of green-up. Consistent with the FMH, migrants experienced substantially greater access to early plant phenology than did residents. Deer were also more likely to migrate in areas where migration led to greater gains in springness. Rather than “surfing the green wave” during migration, migratory red deer moved rapidly from the winter to the summer range, thereby “jumping the green wave.” However, migrants and, to a lesser degree, residents did track phenological green-up through parts of the growing season by making smaller-scale adjustments in habitat use. Despite pronounced differences in their life histories, we found only marginal differences between male and female red deer in this study. Those differences that we did detect pointed toward additional constraints on female space-use tactics, such as those posed by calving and caring for dependent offspring. We conclude that whereas in some systems migration itself is a way to surf the green wave, in others it may simply be a means to reconnect with phenological spring at the summer range. In the light of ubiquitous anthropogenic environmental change, understanding the relationship between the green wave and ungulate space use has important consequences for the management and conservation of migratory ungulates and the phenomenon of migration itself.
Wildlife Society Bulletin | 2005
Hdikan Sand; Barbara Zimmermann; Petter Wabakken; Henrik Andrén; Hans Chr. Pedersen
Abstract Predatory behavior of wolves (Canis lupus) was studied in 2 wolf territories in Scandinavia. We used hourly data from Global Positioning System (GPS)-collared adult wolves in combination with Geographic Information System (GIS) for detailed analyses of movement patterns. We tested the hypothesis that wolves spend 1–2 days close to larger prey such as moose (Alces alces) and reasoned that 1–2 locations per day would be enough to find all larger prey killed by the wolves. In total, the study period comprised 287 days and yielded 6,140 hourly GPS positions, with an average of 21.4±2.4 (SD) daily positions. Depending on the radius used to define clusters, 4,045–5,023 (65.9–81.8%) positions were included in 622–741 GPS-clusters. We investigated all positions within clusters in the field, and 244 (22%) single positions. In total, we found 68 moose and 4 roe deer (Capreolus capreolus) and classified them as wolf-killed within the study period. Another 10–15 moose may have been killed but not found. The GIS analyses indicated the proportion of wolf-killed ungulates included in GPS clusters to be strongly dependent on both number of positions per day and the radius used for defining a set of spatially aggregated GPS positions as a cluster. A higher proportion (78%) of killed prey in clusters based on nighttime (2000–0700) than those based on daytime (0800–1900) positions (41%). Simulation of aerial search during daylight hours for killed moose resulted in a serious underestimation (>60%) as compared to the number of wolf-killed moose found during the study. The average kill rate, corrected for 14% nondetected moose, in the territories was 3.6–4.0 days per killed moose. We concluded that the feeding behavior of wolves in Scandinavia was either different from wolves preying on moose and living at the same latitude in North America, or that estimates of wolf kill rates on moose may have been seriously underestimated in previous North American studies.
Philosophical Transactions of the Royal Society B | 2010
Evelyn H. Merrill; Håkan Sand; Barbara Zimmermann; Heather McPhee; Nathan Webb; Mark Hebblewhite; Petter Wabakken; Jacqueline L. Frair
Quantifying kill rates and sources of variation in kill rates remains an important challenge in linking predators to their prey. We address current approaches to using global positioning system (GPS)-based movement data for quantifying key predation components of large carnivores. We review approaches to identify kill sites from GPS movement data as a means to estimate kill rates and address advantages of using GPS-based data over past approaches. Despite considerable progress, modelling the probability that a cluster of GPS points is a kill site is no substitute for field visits, but can guide our field efforts. Once kill sites are identified, time spent at a kill site (handling time) and time between kills (killing time) can be determined. We show how statistical models can be used to investigate the influence of factors such as animal characteristics (e.g. age, sex, group size) and landscape features on either handling time or killing efficiency. If we know the prey densities along paths to a kill, we can quantify the ‘attack success’ parameter in functional response models directly. Problems remain in incorporating the behavioural complexity derived from GPS movement paths into functional response models, particularly in multi-prey systems, but we believe that exploring the details of GPS movement data has put us on the right path.
Journal of Applied Ecology | 2008
Roel May; Jiska van Dijk; Petter Wabakken; Jon E. Swenson; John D. C. Linnell; Barbara Zimmermann; John Odden; Hans Chr. Pedersen; Reidar Andersen; Arild Landa
The re-establishment of large carnivores in Norway has led to increased conflicts and the adoption of regional zoning for these predators. When planning the future distribution of large carnivores, it is important to consider details of their potential habitat tolerances and strength of inter-specific differentiation. We studied differentiation in habitat and kill sites within the large-carnivore community of south-eastern Norway. We compared habitat selection of the brown bear Ursus arctos L., Eurasian lynx Lynx lynx L., wolf Canis lupus L. and wolverine Gulo gulo L., based on radio-tracking data. Differences in kill site locations were explored using locations of documented predator-killed sheep Ovis aries L. We modelled each species’ selection for, and differentiation in, habitat and kill sites on a landscape scale using resource selection functions and multinomial logistic regression. Based on projected probability of occurrence maps, we estimated continuous patches of habitat within the study area. Although bears, lynx, wolves and wolverines had overlapping distributions, we found a clear differentiation for all four species in both habitat and kill sites. The presence of bears, wolves and lynx was generally associated with rugged, forested areas at lower elevations, whereas wolverines selected rugged terrain at higher elevations. Some degree of sympatry was possible in over 40% of the study area, although only 1·5% could hold all four large carnivores together. Synthesis and applications. A geographically differentiated management policy has been adopted in Norway, aimed at conserving viable populations of large carnivores while minimizing the potential for conflicts. Sympatry of all four carnivores will be most successful if regional zones are established of adequate size spanning an elevational gradient. High prey densities, low carnivore densities, low dietary overlap and scavenging opportunities have most probably led to reduced competitive exclusion. Although regional sympatry enhances the conservation of an intact guild of large carnivores, it may well increase conflict levels and resistance to carnivore conservation locally.
Conservation Genetics | 2002
Linda Hellborg; Christopher W. Walker; Eli Knispel Rueness; John E. Stacy; Ilpo Kojola; Harri Valdmann; Carles Vil; Barbara Zimmermann; Kjetill S. Jakobsen; Hans Ellegren
The European lynx (Lynx lynx) hasexperienced significant decline in populationnumbers over large parts of its formerdistribution area in central and northernEurope. In Scandinavia (Sweden and Norway), thespecies has been subject to intense hunting and inthe early 20th century the population size mayhave been as low as about 100 animals. Duringthe rest of the century there have beenalternating periods of restricted hunting andtotal protection. Future management of theScandinavian lynx population will requireinsight into what effects demographicbottlenecks may have had on genetic variabilityand structure. For this purpose, 276 lynxesfrom Sweden, Norway, Finland, Estonia andLatvia were analysed for polymorphism at 11feline microsatellite loci and at themitochondrial DNA (mtDNA) control region.Scandinavian lynxes were found to be fixed fora single mtDNA haplotype, while this and threeadditional haplotypes were seen in Finland andthe Baltic States (Estonia and Latvia); thehaplotypes were all very similar, onlydiffering at 1–4 sites within a 700 bp regionsequenced. Microsatellite variability wasmoderate (He = 0.51–0.62) with lowerheterozygosity and fewer alleles in Scandinaviathan in Finland and the Baltic States together,though significant so only for the latter.Heterozygosity data in Scandinavia wereconsistent with a recent population bottleneck.Various analyses (e.g. Fst, individual-basedtree, assignment test) revealed distinctgenetic differentiation between Scandinavianlynxes and animals from Finland and the BalticStates. Some structure was evident withinScandinavia as well, suggesting an isolation bydistance. The observed partition of geneticvariability between Scandinavia and the easterncountries thereof indicates that lynxpopulations from the two regions may need to beseparately managed. We discuss what factors canhave contributed to the population geneticstructure seen in northern European lynxpopulations of today.
Journal of Animal Ecology | 2012
Vincenzo Gervasi; Erlend B. Nilsen; Håkan Sand; Manuela Panzacchi; Geir Rune Rauset; Hans Chr. Pedersen; Jonas Kindberg; Petter Wabakken; Barbara Zimmermann; John Odden; Olof Liberg; Jon E. Swenson; John D. C. Linnell
1. Understanding the role of predation in shaping the dynamics of animal communities is a fundamental issue in ecological research. Nevertheless, the complex nature of predator–prey interactions often prevents researchers from modelling them explicitly. 2. By using periodic Leslie–Usher matrices and a simulation approach together with parameters obtained from long-term field projects, we reconstructed the underlying mechanisms of predator–prey demographic interactions and compared the dynamics of the roe deer–red fox–Eurasian lynx–human harvest system with those of the moose–brown bear–gray wolf–human harvest system in the boreal forest ecosystem of the southern Scandinavian Peninsula. 3. The functional relationship of both roe deer and moose λ to changes in predation rates from the four predators was remarkably different. Lynx had the strongest impact among the four predators, whereas predation rates by wolves, red foxes, or brown bears generated minor variations in prey population λ. Elasticity values of lynx, wolf, fox and bear predation rates were −0·157, −0·056, −0·031 and −0·006, respectively, but varied with both predator and prey densities. 4. Differences in predation impact were only partially related to differences in kill or predation rates, but were rather a result of different distribution of predation events among prey age classes. Therefore, the age composition of killed individuals emerged as the main underlying factor determining the overall per capita impact of predation. 5. Our results confirm the complex nature of predator–prey interactions in large terrestrial mammals, by showing that different carnivores preying on the same prey species can exert a dramatically different demographic impact, even in the same ecological context, as a direct consequence of their predation patterns. Similar applications of this analytical framework in other geographical and ecological contexts are needed, but a more general evaluation of the subject is also required, aimed to assess, on a broader systematic and ecological range, what specific traits of a carnivore are most related to its potential impact on prey species.
Journal of Wildlife Management | 2007
Petter Wabakken; Håkan Sand; Ilpo Kojola; Barbara Zimmermann; Jon Martin Arnemo; Hans Chr. Pedersen; Olof Liberg
Abstract We document a new record dispersal for wolves worldwide. The natal straight-line dispersal distance of a Global Positioning System–collared female wolf from the Scandinavian population was 1,092 km from southeast Norway to northeast Finland, with a multistage actual travel distance of >10,000 km. Natural gene flow to the isolated, inbred Scandinavian wolf population may occur if survival of dispersers is improved.
Ecological Applications | 2013
Vincenzo Gervasi; Håkan Sand; Barbara Zimmermann; Jenny Mattisson; Petter Wabakken; John D. C. Linnell
Recolonizing carnivores can have a large impact on the status of wild ungulates, which have often modified their behavior in the absence of predation. Therefore, understanding the dynamics of reestablished predator-prey systems is crucial to predict their potential ecosystem effects. We decomposed the spatial structure of predation by recolonizing wolves (Canis lupus) on two sympatric ungulates, moose (Alces alces) and roe deer (Capreolus capreolus), in Scandinavia during a 10-year study. We monitored 18 wolves with GPS collars, distributed over 12 territories, and collected records from predation events. By using conditional logistic regression, we assessed the contributions of three main factors, the utilization patterns of each wolf territory, the spatial distribution of both prey species, and fine-scale landscape structure, in determining the spatial structure of moose and roe deer predation risk. The reestablished predator-prey system showed a remarkable spatial variation in kill occurrence at the intra-territorial level, with kill probabilities varying by several orders of magnitude inside the same territory. Variation in predation risk was evident also when a spatially homogeneous probability for a wolf to encounter a prey was simulated. Even inside the same territory, with the same landscape structure, and when exposed to predation by the same wolves, the two prey species experienced an opposite spatial distribution of predation risk. In particular, increased predation risk for moose was associated with open areas, especially clearcuts and young forest stands, whereas risk was lowered for roe deer in the same habitat types. Thus, fine-scale landscape structure can generate contrasting predation risk patterns in sympatric ungulates, so that they can experience large differences in the spatial distribution of risk and refuge areas when exposed to predation by a recolonizing predator. Territories with an earlier recolonization were not associated with a lower hunting success for wolves. Such constant efficiency in wolf predation during the recolonization process is in line with previous findings about the naive nature of Scandinavian moose to wolf predation. This, together with the human-dominated nature of the Scandinavian ecosystem, seems to limit the possibility for wolves to have large ecosystem effects and to establish a behaviorally mediated trophic cascade in Scandinavia.
Journal of Wildlife Management | 2007
Barbara Zimmermann; Petter Wabakken; Håkan Sand; Hans Chr. Pedersen; Olof Liberg
Abstract To estimate wolf (Canis lupus) kill rates from fine-scale movement patterns, we followed adult wolves in 3 territories of the Scandinavian wolf population using Global Positioning Systems (GPS) during the winters of 2001–2003. The resulting 6 datasets of 62–84 study days gave a total of 8,747 hourly GPS positions. We visited clusters of positions in the field on average 8.8 days after positioning and found moose (Alces alces) killed by wolves during the study period on 74 (8%) of the 953 clusters. The number of positions and visits to a cluster, their interaction, and the proportion of afternoon positions were significant fixed effects in mixed logistic-regression models predicting the probability of a cluster containing a wolf-killed moose. The models, however, displayed a poor goodness-of-fit and were not a suitable tool for estimating kill rates from positioning data alone. They might be used to reduce fieldwork by excluding unlikely clusters, although the reduction was not substantial. We discuss proximate factors (i.e., human disturbance and access to prey) as well as ultimate factors (i.e., social organization, intra-guild dominance, and litter size) as potential causes of the observed high temporal and spatial variation in prey-handling. For similar future kill-rate studies, we recommend increasing field efforts and shortening positioning intervals.
Journal of Mammalogy | 2000
Olav Strand; Arild Landa; John D. C. Linnell; Barbara Zimmermann; Terje Skogland
Abstract We studied social organization and behavior of arctic foxes (Alopex lagopus) in 3 adjacent territories from 1988 to 1995 in central Norway, where the major rodent prey were cyclic. Twenty-five foxes were equipped with radiotransmitters and several other individuals could be recognized visually. Paired adult foxes and their cubs had home ranges that overlapped more with each other than with neighboring foxes (37% versus 2.9%) and therefore seemed to be territorial. Family composition varied from monogamous pairs, to pairs with additional adults, to an example with 2 reproducing females and 1 male in the same den. Presence of additional family members was independent of the state of the rodent cycle and the reproductive state of the breeding pair. Additional family members contributed only 2% of the food provided to young pups and were therefore not regarded as true helpers. Breeding adults remained resident within the same territory even in years with low abundance of rodents, when they did not breed. All pups left their natal territory by 6 months of age, although some subsequently returned to their natal range or one of the adjacent dens.