Hans Chr. Pedersen
Hedmark University College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hans Chr. Pedersen.
Wildlife Society Bulletin | 2005
Hdikan Sand; Barbara Zimmermann; Petter Wabakken; Henrik Andrén; Hans Chr. Pedersen
Abstract Predatory behavior of wolves (Canis lupus) was studied in 2 wolf territories in Scandinavia. We used hourly data from Global Positioning System (GPS)-collared adult wolves in combination with Geographic Information System (GIS) for detailed analyses of movement patterns. We tested the hypothesis that wolves spend 1–2 days close to larger prey such as moose (Alces alces) and reasoned that 1–2 locations per day would be enough to find all larger prey killed by the wolves. In total, the study period comprised 287 days and yielded 6,140 hourly GPS positions, with an average of 21.4±2.4 (SD) daily positions. Depending on the radius used to define clusters, 4,045–5,023 (65.9–81.8%) positions were included in 622–741 GPS-clusters. We investigated all positions within clusters in the field, and 244 (22%) single positions. In total, we found 68 moose and 4 roe deer (Capreolus capreolus) and classified them as wolf-killed within the study period. Another 10–15 moose may have been killed but not found. The GIS analyses indicated the proportion of wolf-killed ungulates included in GPS clusters to be strongly dependent on both number of positions per day and the radius used for defining a set of spatially aggregated GPS positions as a cluster. A higher proportion (78%) of killed prey in clusters based on nighttime (2000–0700) than those based on daytime (0800–1900) positions (41%). Simulation of aerial search during daylight hours for killed moose resulted in a serious underestimation (>60%) as compared to the number of wolf-killed moose found during the study. The average kill rate, corrected for 14% nondetected moose, in the territories was 3.6–4.0 days per killed moose. We concluded that the feeding behavior of wolves in Scandinavia was either different from wolves preying on moose and living at the same latitude in North America, or that estimates of wolf kill rates on moose may have been seriously underestimated in previous North American studies.
PLOS ONE | 2006
Staffan Bensch; Henrik Andrén; Bengt Hansson; Hans Chr. Pedersen; Håkan Sand; Douglas Sejberg; Petter Wabakken; Mikael Åkesson; Olof Liberg
Recent analyses have questioned the usefulness of heterozygosity estimates as measures of the inbreeding coefficient (f), a finding that may have dramatic consequences for the management of endangered populations. We confirm that f and heterozygosity is poorly correlated in a wild and highly inbred wolf population. Yet, our data show that for each level of f, it was the most heterozygous wolves that established themselves as breeders, a selection process that seems to have decelerated the loss of heterozygosity in the population despite a steady increase of f. The markers contributing to the positive relationship between heterozygosity and breeding success were found to be located on different chromosomes, but there was a substantial amount of linkage disequilibrium in the population, indicating that the markers are reflecting heterozygosity over relatively wide genomic regions. Following our results we recommend that management programs of endangered populations include estimates of both f and heterozygosity, as they may contribute with complementary information about population viability.
Journal of Animal Ecology | 2011
Brett K. Sandercock; Erlend B. Nilsen; Henrik Brøseth; Hans Chr. Pedersen
1. The effects of harvest on the annual and seasonal survival of willow ptarmigan Lagopus lagopus L. were tested in a large-scale harvest experiment. Management units were randomly assigned to one of three experimental treatments: 0%, 15% or 30% harvest. Seasonal quotas were based on the experimental treatment and estimates of bird density before the hunting season. Survival rates and hazard functions for radio-marked ptarmigan were then estimated under the competing risks of harvest and natural mortality. 2. The partially compensatory mortality hypothesis was supported: annual survival of ptarmigan was 0·54 ± 0·08 SE under 0% harvest, 0·47 ± 0·06 under 15% harvest, and was reduced to 0·30 ± 0·05 under 30% harvest. Harvest mortality increased linearly from 0·08 ± 0·05, 0·27 ± 0·05 and 0·42 ± 0·06 from 0% to 30% harvest, whereas natural mortality was 0·38 ± 0·08, 0·25 ± 0·05 and 0·28 ± 0·06 under the same treatments. 3. Realized risk of harvest mortality was 0·08-0·12 points higher than our set harvest treatments of 0-30% because birds were exposed to risk if they moved out of protected areas. The superadditive hypothesis was supported because birds in the 30% harvest treatment had higher natural mortality during winter after the hunting season. 4. Natural mortality was mainly because of raptor predation, with two seasonal peaks in fall and spring. Natural and harvest mortality coincided during early autumn with little potential for compensation during winter months. Peak risk of harvest mortality was 5× higher than natural mortality. Low natural mortality during winter suggests that most late season harvest would be additive mortality. 5. Environmental correlates of natural mortality of ptarmigan included seasonal changes in snow cover, onset of juvenile dispersal, and periods of territorial activity. Natural mortality of ptarmigan was highest during autumn movements and nesting by gyrfalcons Falco rusticolus L. Mortality was low when gyrfalcons had departed for coastal wintering sites, and during summer when ptarmigan were attending nests and broods. 6. Our experimental results have important implications for harvest management of upland gamebirds. Seasonal quotas based on proportional harvest were effective and should be set at ≤ 15% of August populations for regional management plans. Under threshold harvest of a reproductive surplus, 15% harvest would be sustainable at productivity rates ≥ 2·5 young per pair. Impacts of winter harvest could be minimized by closing the hunting season in early November or by reducing late season quotas.
Journal of Applied Ecology | 2008
Roel May; Jiska van Dijk; Petter Wabakken; Jon E. Swenson; John D. C. Linnell; Barbara Zimmermann; John Odden; Hans Chr. Pedersen; Reidar Andersen; Arild Landa
The re-establishment of large carnivores in Norway has led to increased conflicts and the adoption of regional zoning for these predators. When planning the future distribution of large carnivores, it is important to consider details of their potential habitat tolerances and strength of inter-specific differentiation. We studied differentiation in habitat and kill sites within the large-carnivore community of south-eastern Norway. We compared habitat selection of the brown bear Ursus arctos L., Eurasian lynx Lynx lynx L., wolf Canis lupus L. and wolverine Gulo gulo L., based on radio-tracking data. Differences in kill site locations were explored using locations of documented predator-killed sheep Ovis aries L. We modelled each species’ selection for, and differentiation in, habitat and kill sites on a landscape scale using resource selection functions and multinomial logistic regression. Based on projected probability of occurrence maps, we estimated continuous patches of habitat within the study area. Although bears, lynx, wolves and wolverines had overlapping distributions, we found a clear differentiation for all four species in both habitat and kill sites. The presence of bears, wolves and lynx was generally associated with rugged, forested areas at lower elevations, whereas wolverines selected rugged terrain at higher elevations. Some degree of sympatry was possible in over 40% of the study area, although only 1·5% could hold all four large carnivores together. Synthesis and applications. A geographically differentiated management policy has been adopted in Norway, aimed at conserving viable populations of large carnivores while minimizing the potential for conflicts. Sympatry of all four carnivores will be most successful if regional zones are established of adequate size spanning an elevational gradient. High prey densities, low carnivore densities, low dietary overlap and scavenging opportunities have most probably led to reduced competitive exclusion. Although regional sympatry enhances the conservation of an intact guild of large carnivores, it may well increase conflict levels and resistance to carnivore conservation locally.
Journal of Wildlife Management | 2008
Scott M. Brainerd; Henrik Andrén; Edward E. Bangs; Elizabeth H. Bradley; Joseph A. Fontaine; Wayne Hall; Yorgos Iliopoulos; Michael D. Jimenez; Elizabeth A. Jozwiak; Olof Liberg; Curt M. Mack; Thomas J. Meier; Carter C. Niemeyer; Hans Chr. Pedersen; Håkan Sand; Ronald N. Schultz; Douglas W. Smith; Petter Wabakken; Adrian P. Wydeven
Abstract Managers of recovering wolf (Canis lupus) populations require knowledge regarding the potential impacts caused by the loss of territorial, breeding wolves when devising plans that aim to balance population goals with human concerns. Although ecologists have studied wolves extensively, we lack an understanding of this phenomenon as published records are sparse. Therefore, we pooled data (n = 134 cases) on 148 territorial breeding wolves (75 M and 73 F) from our research and published accounts to assess the impacts of breeder loss on wolf pup survival, reproduction, and territorial social groups. In 58 of 71 cases (84%), ≥1 pup survived, and the number or sex of remaining breeders (including multiple breeders) did not influence pup survival. Pups survived more frequently in groups of ≥6 wolves (90%) compared with smaller groups (68%). Auxiliary nonbreeders benefited pup survival, with pups surviving in 92% of cases where auxiliaries were present and 64% where they were absent. Logistic regression analysis indicated that the number of adult-sized wolves remaining after breeder loss, along with pup age, had the greatest influence on pup survival. Territorial wolves reproduced the following season in 47% of cases, and a greater proportion reproduced where one breeder had to be replaced (56%) versus cases where both breeders had to be replaced (9%). Group size was greater for wolves that reproduced the following season compared with those that did not reproduce. Large recolonizing (>75 wolves) and saturated wolf populations had similar times to breeder replacement and next reproduction, which was about half that for small recolonizing (≤75 wolves) populations. We found inverse relationships between recolonizing population size and time to breeder replacement (r = −0.37) and time to next reproduction (r = −0.36). Time to breeder replacement correlated strongly with time to next reproduction (r = 0.97). Wolf social groups dissolved and abandoned their territories subsequent to breeder loss in 38% of cases. Where groups dissolved, wolves reestablished territories in 53% of cases, and neighboring wolves usurped territories in an additional 21% of cases. Fewer groups dissolved where breeders remained (26%) versus cases where breeders were absent (85%). Group size after breeder loss was smaller where groups dissolved versus cases where groups did not dissolve. To minimize negative impacts, we recommend that managers of recolonizing wolf populations limit lethal control to solitary individuals or territorial pairs where possible, because selective removal of pack members can be difficult. When reproductive packs are to be managed, we recommend that managers only remove wolves from reproductive packs when pups are ≥6 months old and packs contain ≥6 members (including ≥3 ad-sized wolves). Ideally, such packs should be close to neighboring packs and occur within larger (≥75 wolves) recolonizing populations.
Journal of Animal Ecology | 2012
Vincenzo Gervasi; Erlend B. Nilsen; Håkan Sand; Manuela Panzacchi; Geir Rune Rauset; Hans Chr. Pedersen; Jonas Kindberg; Petter Wabakken; Barbara Zimmermann; John Odden; Olof Liberg; Jon E. Swenson; John D. C. Linnell
1. Understanding the role of predation in shaping the dynamics of animal communities is a fundamental issue in ecological research. Nevertheless, the complex nature of predator–prey interactions often prevents researchers from modelling them explicitly. 2. By using periodic Leslie–Usher matrices and a simulation approach together with parameters obtained from long-term field projects, we reconstructed the underlying mechanisms of predator–prey demographic interactions and compared the dynamics of the roe deer–red fox–Eurasian lynx–human harvest system with those of the moose–brown bear–gray wolf–human harvest system in the boreal forest ecosystem of the southern Scandinavian Peninsula. 3. The functional relationship of both roe deer and moose λ to changes in predation rates from the four predators was remarkably different. Lynx had the strongest impact among the four predators, whereas predation rates by wolves, red foxes, or brown bears generated minor variations in prey population λ. Elasticity values of lynx, wolf, fox and bear predation rates were −0·157, −0·056, −0·031 and −0·006, respectively, but varied with both predator and prey densities. 4. Differences in predation impact were only partially related to differences in kill or predation rates, but were rather a result of different distribution of predation events among prey age classes. Therefore, the age composition of killed individuals emerged as the main underlying factor determining the overall per capita impact of predation. 5. Our results confirm the complex nature of predator–prey interactions in large terrestrial mammals, by showing that different carnivores preying on the same prey species can exert a dramatically different demographic impact, even in the same ecological context, as a direct consequence of their predation patterns. Similar applications of this analytical framework in other geographical and ecological contexts are needed, but a more general evaluation of the subject is also required, aimed to assess, on a broader systematic and ecological range, what specific traits of a carnivore are most related to its potential impact on prey species.
Journal of Wildlife Management | 2007
Petter Wabakken; Håkan Sand; Ilpo Kojola; Barbara Zimmermann; Jon Martin Arnemo; Hans Chr. Pedersen; Olof Liberg
Abstract We document a new record dispersal for wolves worldwide. The natal straight-line dispersal distance of a Global Positioning System–collared female wolf from the Scandinavian population was 1,092 km from southeast Norway to northeast Finland, with a multistage actual travel distance of >10,000 km. Natural gene flow to the isolated, inbred Scandinavian wolf population may occur if survival of dispersers is improved.
Journal of Wildlife Management | 2007
Barbara Zimmermann; Petter Wabakken; Håkan Sand; Hans Chr. Pedersen; Olof Liberg
Abstract To estimate wolf (Canis lupus) kill rates from fine-scale movement patterns, we followed adult wolves in 3 territories of the Scandinavian wolf population using Global Positioning Systems (GPS) during the winters of 2001–2003. The resulting 6 datasets of 62–84 study days gave a total of 8,747 hourly GPS positions. We visited clusters of positions in the field on average 8.8 days after positioning and found moose (Alces alces) killed by wolves during the study period on 74 (8%) of the 953 clusters. The number of positions and visits to a cluster, their interaction, and the proportion of afternoon positions were significant fixed effects in mixed logistic-regression models predicting the probability of a cluster containing a wolf-killed moose. The models, however, displayed a poor goodness-of-fit and were not a suitable tool for estimating kill rates from positioning data alone. They might be used to reduce fieldwork by excluding unlikely clusters, although the reduction was not substantial. We discuss proximate factors (i.e., human disturbance and access to prey) as well as ultimate factors (i.e., social organization, intra-guild dominance, and litter size) as potential causes of the observed high temporal and spatial variation in prey-handling. For similar future kill-rate studies, we recommend increasing field efforts and shortening positioning intervals.
Acta Theriologica | 2009
Camilla Wikenros; Håkan Sand; Petter Wabakken; Olof Liberg; Hans Chr. Pedersen
We examined chase distances of gray wolves Canis lupus Linnaeus, 1758 hunting moose Alces alces and roe deer Capreolus capreolus, and recorded details of encounters between wolves and prey on the Scandinavian Peninsula, 1997–2003. In total, 252 wolf attacks on moose and 64 attacks on roe deer were registered during 4200 km of snow tracking in 28 wolf territories. Average chase distances were 76 m for moose and 237 m for roe deer, a difference likely due to variation in body size and vigilance between prey species. A model including prey species, outcome of the attack, and snow depth explained 15–19% of the variation found in chase distances, with shorter chase distances associated with greater snow depth and with successful attacks on moose but not on roe deer. Wolf hunting success did not differ between prey species (moose 43%, roe deer 47%) but in 11% of the wolf attacks on moose at least one moose was injured but not killed, whereas no injured roe deer survived. Compared with most North American wolf studies chase distances were shorter, hunting success was greater, and fewer moose made a stand when attacked by wolves in our study. Differences in wolf encounters with moose and roe deer likely result from different anti-predator behaviour and predator-prey history between prey species.
Ornis scandinavica | 1983
Hans Chr; Johan B. Steen; Reidar Andersen; Hans Chr. Pedersen; J. B. Steen; Roy Andersen
Willow Ptarmigan in Norway showed the same postures and calls as Red Grouse. Territorial behaviour occurred at dusk and dawn from September to December and from April to June. During the day cocks did not defend territories. This daily rythm was apparently acquired rather than genetic, since captive birds did not show it. Whereas Red Grouse at high density display at all times of day, Willow Ptarmigan seldom do so, regardless of density. Cocks showed higher site tenacity than hens. There was no tendency for young cocks to establish territory close to the territory of their parents.