Barbora Szotáková
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbora Szotáková.
Research in Veterinary Science | 2004
Barbora Szotáková; V. Baliharová; Jiří Lamka; E. Nožinová; Vladimír Wsól; J. Velík; Miroslav Machala; Jiří Neča; Pavel Soucek; S. Šusová; Lenka Skálová
In vitro activities of cytochromes P450 (7-alkyl/aryloxyresorufin dealkyl(aryl)ases, testosterone hydroxylase/oxidase, 6-chlorzoxazone hydroxylase, 7-methoxy-4-trifluoromethyl-coumarin demethylase, and lauric acid hydroxylases), reductases of carbonyl group (toward metyrapone, daunorubicin, glyceraldehyde, and 4-pyridine-carboxaldehyde) and conjugation enzymes (p-nitrophenol-UDP-glucuronosyl transferase, 1-chloro-2,4-dinitrobenzene glutathione-S-tranferase) in young adults, males, non-castrated (N=6) farm animals were studied and compared. Presence of proteins cross-reacting with anti-human CYP3A4, CYP2C9, and CYP2E1 IgG was detected in all farm species. Bovine microsomes differed from other microsomes of farm species in very high 7-ethoxyresorufin-O-deethylase activity (CYP1A1/2). Significantly higher 7-methoxy-4-trifluoromethyl-coumarin demethylase (2-3 times) and 12-lauric acid hydroxylases (4-10 times) activities (probably corresponding to CYP2C and CYP4A, respectively) were found in ovine microsomes. The highest 6beta-testosterone hydroxylase activity, which is usually considered to be a CYP3A activity marker, was found in pig. Reductases of all farm animals display considerable ability to reduce carbonyl group of xenobiotics. Significant differences in level and activity of many biotransformation enzymes tested suggest that extrapolation of pharmacokinetic data obtained in one species to another (even related) could be misleading.
Current Drug Metabolism | 2004
Vladimír Wsól; Lenka Skálová; Barbora Szotáková
2-arylpropionic acid derivatives are probably the most frequently cited drugs exhibiting the phenomenon that is best known as chiral inversion. One enantiomer of drug is converted into its antipode either in the presence of a solvent or more often in inner environment of an organism. Mechanistic studies of the metabolic chiral inversion were carried out for several drugs from NSAIDs, and a model of this inversion was suggested and subsequently confirmed. The chiral inversion of NSAIDs has been intensively studied in the context of the pharmacological and toxicological consequences. However, the group of NSAIDs is not the sole group of drugs in which the inversion phenomenon can be observed. There exist several other drugs that also display chiral inversion of one or even both of their enantiomers. These drugs belong to different pharmacotherapeutic groups as monoamine oxidase inhibitors, antiepileptic drugs, drugs used in the treatment of hyperlipoproteinemia or drugs that are effective in the treatment of leprosy. Moreover, some chiral or prochiral drugs are metabolized to give chiral metabolites that undergo chiral inversion too, which can have direct impact on pharmacological properties or toxicity of the drug. As the process of chiral inversion is affected by several factors, so the intensity of chiral inversion of individual substances and at different conditions can differ considerably. Interspecies differences and types of tissue are reported to be the main factors that were recognized to play the key role in the process of chiral inversion. Some of more recent studies have revealed that several other factors, such as the route of administration or interaction with other xenobiotics, can influence the enantiomeric conversion, too. Chiral inversion does not seem to be a phenomenon connected with only several drugs from some unique group of 2-arylpropionic acid derivatives: it is also observed in drugs with rather different chemical structures and is much more frequent than it can be realized.
PLOS ONE | 2014
Petra Matoušková; Hana Bártíková; Iva Boušová; Veronika Hanušová; Barbora Szotáková; Lenka Skálová
UNLABELLED Obesity and metabolic syndrome is increasing health problem worldwide. Among other ways, nutritional intervention using phytochemicals is important method for treatment and prevention of this disease. Recent studies have shown that certain phytochemicals could alter the expression of specific genes and microRNAs (miRNAs) that play a fundamental role in the pathogenesis of obesity. For study of the obesity and its treatment, monosodium glutamate (MSG)-injected mice with developed central obesity, insulin resistance and liver lipid accumulation are frequently used animal models. To understand the mechanism of phytochemicals action in obese animals, the study of selected genes expression together with miRNA quantification is extremely important. For this purpose, real-time quantitative PCR is a sensitive and reproducible method, but it depends on proper normalization entirely. The aim of present study was to identify the appropriate reference genes for mRNA and miRNA quantification in MSG mice treated with green tea catechins, potential anti-obesity phytochemicals. Two sets of reference genes were tested: first set contained seven commonly used genes for normalization of messenger RNA, the second set of candidate reference genes included ten small RNAs for normalization of miRNA. The expression stability of these reference genes were tested upon treatment of mice with catechins using geNorm, NormFinder and BestKeeper algorithms. Selected normalizers for mRNA quantification were tested and validated on expression of NAD(P)H quinone oxidoreductase, biotransformation enzyme known to be modified by catechins. The effect of selected normalizers for miRNA quantification was tested on two obesity- and diabetes- related miRNAs, miR-221 and miR-29b, respectively. Finally, the combinations of B2M/18S/HPRT1 and miR-16/sno234 were validated as optimal reference genes for mRNA and miRNA quantification in liver and 18S/RPlP0/HPRT1 and sno234/miR-186 in small intestine of MSG mice. These reference genes will be used for mRNA and miRNA normalization in further study of green tea catechins action in obese mice.
Chemico-Biological Interactions | 2003
Vladimír Wsól; Barbora Szotáková; Lenka Skálová; Edmund Maser
Oracin, 6-[2-(2-hydroxyethyl)aminoethyl]-5,11-dioxo-5,6-dihydro-11H-indeno[1,2-c] isoquinoline, is a potential cytostatic drug for oral use and presently in phase II of clinical trials. Major advantages of this novel chemotherapeutic are the possibility of oral administration, its negative results in the Ames test on mutagenicity, and the lack of cardiotoxicity. Metabolic studies on oracin have revealed that the principal metabolite in all laboratory animals is 11-dihydrooracin (DHO), which is produced by carbonyl reduction of the parent compound. Since the carbonyl moiety of oracin is a pro-chiral centre, reduction may lead to the two stereoisomer forms (+)-DHO and (-)-DHO. The aim of the present study was to infer if 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD 1) is responsible for carbonyl reduction of oracin in mouse liver and if this enzyme exhibits stereospecificity in DHO formation. 11beta-HSD 1 was purified from mouse liver microsomes, and the kinetics and stereospecificity regarding DHO formation were determined and compared to values obtained from the whole microsomal fraction. We could show that purified mouse liver 11beta-HSD 1 catalyzes the stereospecific carbonyl reduction of oracin, thereby following a sigmoidal dose-response kinetics. Due to a different ratio of (+)-DHO and (-)-DHO (93:7) formed by purified 11beta-HSD 1 compared to that produced in whole microsomes (70:30), the existence of at least one other oracin carbonyl reducing enzyme can be expected in mouse liver microsomes. This suggestion is further supported by the fact that the Hill coefficient of 2 for purified 11beta-HSD 1 (which is supporting earlier data on the cooperativity of this dimeric enzyme) changes to a Hill coefficient of 3 in whole microsomes (which is indicative for another enzyme participating in oracin carbonyl reduction).
Journal of Chromatography B: Biomedical Sciences and Applications | 1996
Vladimír Wsól; E. Kvasni⩽ková; Barbora Szotáková; Ivo M. Hais
Oracine (I), a potential cytostatic drug, is enzymically converted to a number of metabolites whose formation has been studied in vitro and in vivo. The metabolites were separated by reversed-phase HPLC and characterized by UV spectra. Preparative TLC served for the isolation of the individual metabolites to allow their identification. Two metabolites were identified by Fourier transform NMR as 11-dihydrooracine (II) and a phenolic product (III). Two further metabolites (IV,V) were characterized. Some minor, presumably 11-dihydro metabolites and an 11-oxo metabolite produced in vitro and in vivo were revealed.
Research in Veterinary Science | 2009
V. Cvilink; Barbora Szotáková; V. Křížová; Jiří Lamka; Lenka Skálová
Dicroceliosis, a lancet fluke infection, is a frequent parasitosis of small ruminants and the anthelmintic drug albendazole (ABZ) is effective in control of this parasitosis. The aim of our project was to study the metabolism of ABZ and ABZ sulphoxide (ABZ.SO) in lancet fluke. Both invitro (subcellular fractions of fluke homogenates) and exvivo experiments (adult flukes cultivated in medium) were performed for this purpose. ABZ was metabolised invitro by lancet fluke NADPH-dependent enzymes by two oxidative steps (sulphoxidation and sulphonation). The apparent kinetic parameters of these reactions have been determined. In the exvivo experiments, only ABZ sulphoxidation was observed. The stereospecificity in ABZ sulphoxidation invitro was slight, with preferential formation of (+)-ABZ.SO enantiomer. In contrast (-)-ABZ.SO formation predominated in exvivo experiments. Sulphoreduction of ABZ.SO occurred neither invivo nor exvivo. The detection of ABZ oxidative metabolites indicates the presence of drug metabolising oxidases in lancet fluke.
Archives of Toxicology | 2003
Miroslav Machala; Pavel Soucek; Jiří Neča; Robert Ulrich; Jiří Lamka; Barbora Szotáková; Lenka Skálová
Our current knowledge about the biotransformation enzymes in wild ruminants is limited. The present study aimed to compare basic levels and specific activities of cytochrome P450 isoforms (CYP1A, 2A, 2B, 2C, 2D, 2E, 3A, 4A) in males of red deer (Cervus elaphus), fallow deer (Dama dama), roe deer (Capreolus capreolus) and mouflon (Ovis musimon). The proteins from the major cytochrome P450 (CYP) subfamilies were detected in all ruminant species by Western blotting, using polyclonal antibodies raised against rat or human CYP enzymes. The immunochemical data seem to suggest that humans and wild ruminants share some similar hepatic CYP enzymes corresponding to members of subfamilies 2 and 3; ruminant liver samples also contained two proteins cross-reacting with anti-rat CYP1A antibodies. High activities of CYP1A enzymes found in liver microsomes of male fallow deer and roe deer are indicative of increased susceptibility of these species towards promutagens that are metabolically activated by these CYPs. On the other hand, low activities of CYP1A-dependent alkoxyresorufin O-dealkylase activities were detected in male mouflons. Oxidative metabolism of testosterone was significantly higher in wild ruminants than the values previously reported from bulls. Androstene-3,17-dione and 6β-hydroxytestosterone were the most important products of testosterone oxidation in liver microsomes of all the ruminant species under study. The highest CYP3A-dependent testosterone 6β-hydroxylase activity was found in mouflons and fallow deer. A different pattern of CYP activities towards testosterone was found in roe deer, which showed high activities of testosterone 2β-hydroxylase and lower production of androstene-3,17-dione. An increased activity of CYP4A-dependent laurate 12-hydroxylase found in roe deer and mouflons might indicate a higher metabolic turnover of fatty acids. The data on CYP activities indicated that high metabolic rates of steroids, fatty acids, and xenobiotics may occur in male wild ruminants. The highest hepatic activities specific for CYP3A, CYP2C, CYP2D, and CYP2E enzymes were found in mouflon, suggesting that this species has the highest biotransformation capacity.
Analytical and Bioanalytical Chemistry | 2013
Lucie Stuchlíková; Robert Jirásko; Ivan Vokřál; Jiří Lamka; Marcel Spulak; Michal Holčapek; Barbora Szotáková; Hana Bártíková; Milan Pour; Lenka Skálová
Monepantel (MOP) belongs to a new class of anthelmintic drugs known as aminoacetonitrile derivatives. It was approved for use in veterinary practice in Czech Republic in 2011. So far, biotransformation and transport of MOP in target animals have been studied insufficiently, although the study of metabolic pathways of anthelmintics is very important for the efficacy of safety of therapy and evaluation of the risk of drug–drug interactions. The aim of this study was to identify MOP metabolites and to suggest the metabolic pathways of MOP in sheep. For this purpose, primary culture of ovine hepatocytes was used as a model in vitro system. After incubation, medium samples and homogenates of hepatocytes were extracted separately using solid-phase extraction. Analysis was performed using a hybrid quadrupole-time-of-flight analyzer with respect to high mass accuracy measurements in full scan and tandem mass spectra for the confirmation of an elemental composition. The obtained results revealed S-oxidation to sulfoxide and sulfone and arene hydroxylation as MOP phase I biotransformations. From phase II metabolites, MOP glucuronides, sulfates, and acetylcysteine conjugates were found. Based on the obtained results, a scheme of the metabolic pathway of MOP in sheep has been proposed.
Veterinary Parasitology | 2013
Ivan Vokřál; Robert Jirásko; Lucie Stuchlíková; Hana Bártíková; Barbora Szotáková; Jiří Lamka; Marián Várady; Lenka Skálová
The increased activity of drug-metabolizing enzymes can protect helminths against the toxic effect of anthelmintics. The aim of this study was to compare the metabolism of the anthelmintic drug albendazole (ABZ) and the activities of selected biotransformation and antioxidant enzymes in three different strains of Haemonchus contortus: the ISE strain (susceptible to common anthelmintics), the BR strain (resistant to benzimidazole anthelmintics) and the WR strain (multi-resistant). H. contortus adults were collected from the abomasum of experimentally infected lambs. In vitro (subcellular fractions of H. contortus homogenate) as well as ex vivo (living nematodes cultivated in flasks with medium) experiments were performed. HPLC with spectrofluorimetric and mass-spectrometric detection was used in the analysis of ABZ metabolites. The in vitro activities of oxidation/antioxidation and conjugation enzymes toward model substrates were also assayed. The in vitro data showed significant differences between the susceptible (ISE) and resistant (BR, WR) strains regarding the activities of peroxidases, catalase and UDP-glucosyltransferases. S-oxidation of ABZ was significantly lower in BR than in the ISE strain. Ex vivo, four ABZ metabolites were identified: ABZ sulphoxide and three ABZ glucosides. In the resistant strains BR and WR, the ex vivo formation of all ABZ glucosides was significantly higher than in the susceptible ISE strain. The altered activities of certain detoxifying enzymes might partly protect the parasites against the toxic effect of the drugs as well as contribute to drug-resistance in these parasites.
Chemico-Biological Interactions | 2001
Lenka Skálová; Barbora Szotáková; Miroslav Machala; Jiří Neča; Pavel Soucek; Jana Havlasová; Vladimír Wsól; Lenka Křı́dová; Eva Kvasničková; Jiří Lamka
Ivermectin is an antiparasitic drug widely used in veterinary and human medicine. We have found earlier that repeated treatments of rats with high doses of this drug led to significant increase of cytochrome P450-dependent 7-methoxyresorufin O-demethylase (MROD) and 7-ethoxyresorufin O-deethylase (EROD) activities in hepatic microsomes. In the present study, the effects of ivermectin on cytochrome P450 (CYP) activities were investigated in mouflon (Ovis musimon) and fallow deer (Dama dama). This study was conducted also to point out general lack of information on both basal levels of CYP enzymes and their inducibilities by veterinary drugs in wild ruminants. Liver microsomes were prepared from control animals, mouflons, after single or repeated (six doses in six consecutive days) treatments with therapeutic doses of ivermectin (0.5 mg kg(-1) of body weight), and fallow deer exposed to repeated doses of ivermectin under the same conditions. Alkyloxyresorufins, testosterone and chlorzoxazone were used as the specific substrate probes of activities of the CYP isoenzymes. A single therapeutic dose of ivermectin significantly induced (300-400% of the control group) the activities of all alkyloxyresorufin dealkylases tested in mouflon liver microsomes. Repeated doses of ivermectin also caused an increase of these activities, but due to fair inter-individual differences, this increase was not significant. The administration of ivermectin led to an induction (170-210% of the control) of the testosterone 6beta- and 16alpha-hydroxylase activities in mouflon liver but no significant modulation of chlorzoxazone hydroxylase (CZXOH) activity was found in mouflon liver. CYP-dependent activities in hepatic microsomes were generally higher in fallow deer than in mouflons. However, with the exception of slight increase in the 7-benzyloxyresorufin O-dealkylase (BROD) activities, no significant modulation of the other activities was observed. The induction of CYP3A-like isoenzyme was confirmed by immunoblotting only in the microsomes from mouflons administered with repeated doses of ivermectin; however, no significant increase of CYP1A isoenzymes was observed due to a weak cross-reactivity of anti-rat CYP1A1/2 polyclonal antibodies used in the study. The results indicate that ivermectin should be considered as an inducer of several cytochrome P450 isoenzymes, including CYP1A, 2B and 3A subfamilies, in mouflons. The comparison of induction effect of ivermectin in rat, mouflon and fallow deer also demonstrates the inter-species differences in inducibility of CYP enzymes.