Ivan Vokřál
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ivan Vokřál.
Analytical and Bioanalytical Chemistry | 2013
Lucie Stuchlíková; Robert Jirásko; Ivan Vokřál; Jiří Lamka; Marcel Spulak; Michal Holčapek; Barbora Szotáková; Hana Bártíková; Milan Pour; Lenka Skálová
Monepantel (MOP) belongs to a new class of anthelmintic drugs known as aminoacetonitrile derivatives. It was approved for use in veterinary practice in Czech Republic in 2011. So far, biotransformation and transport of MOP in target animals have been studied insufficiently, although the study of metabolic pathways of anthelmintics is very important for the efficacy of safety of therapy and evaluation of the risk of drug–drug interactions. The aim of this study was to identify MOP metabolites and to suggest the metabolic pathways of MOP in sheep. For this purpose, primary culture of ovine hepatocytes was used as a model in vitro system. After incubation, medium samples and homogenates of hepatocytes were extracted separately using solid-phase extraction. Analysis was performed using a hybrid quadrupole-time-of-flight analyzer with respect to high mass accuracy measurements in full scan and tandem mass spectra for the confirmation of an elemental composition. The obtained results revealed S-oxidation to sulfoxide and sulfone and arene hydroxylation as MOP phase I biotransformations. From phase II metabolites, MOP glucuronides, sulfates, and acetylcysteine conjugates were found. Based on the obtained results, a scheme of the metabolic pathway of MOP in sheep has been proposed.
Veterinary Parasitology | 2013
Ivan Vokřál; Robert Jirásko; Lucie Stuchlíková; Hana Bártíková; Barbora Szotáková; Jiří Lamka; Marián Várady; Lenka Skálová
The increased activity of drug-metabolizing enzymes can protect helminths against the toxic effect of anthelmintics. The aim of this study was to compare the metabolism of the anthelmintic drug albendazole (ABZ) and the activities of selected biotransformation and antioxidant enzymes in three different strains of Haemonchus contortus: the ISE strain (susceptible to common anthelmintics), the BR strain (resistant to benzimidazole anthelmintics) and the WR strain (multi-resistant). H. contortus adults were collected from the abomasum of experimentally infected lambs. In vitro (subcellular fractions of H. contortus homogenate) as well as ex vivo (living nematodes cultivated in flasks with medium) experiments were performed. HPLC with spectrofluorimetric and mass-spectrometric detection was used in the analysis of ABZ metabolites. The in vitro activities of oxidation/antioxidation and conjugation enzymes toward model substrates were also assayed. The in vitro data showed significant differences between the susceptible (ISE) and resistant (BR, WR) strains regarding the activities of peroxidases, catalase and UDP-glucosyltransferases. S-oxidation of ABZ was significantly lower in BR than in the ISE strain. Ex vivo, four ABZ metabolites were identified: ABZ sulphoxide and three ABZ glucosides. In the resistant strains BR and WR, the ex vivo formation of all ABZ glucosides was significantly higher than in the susceptible ISE strain. The altered activities of certain detoxifying enzymes might partly protect the parasites against the toxic effect of the drugs as well as contribute to drug-resistance in these parasites.
Parasitology | 2012
Ivan Vokřál; Hana Bártíková; Lukáš Prchal; Lucie Stuchlíková; Lenka Skálová; Barbora Szotáková; Jiří Lamka; Marián Várady; Vladimír Kubíček
Haemonchus contortus is one of the most pathogenic parasites of small ruminants (e.g. sheep and goat). The treatment of haemonchosis is complicated because of recurrent resistance of H. contortus to common anthelmintics. The aim of this study was to compare the metabolism of the anthelmintic drug flubendazole (FLU) and the activities of selected biotransformation enzymes towards model xenobiotics in 4 different strains of H. contortus: the ISE strain (susceptible to common anthelmintics), ISE-S (resistant to ivermectin), the BR strain (resistant to benzimidazole anthelmintics) and the WR strain (resistant to all common anthelmintics). H. contortus adults were collected from the abomasums from experimentally infected lambs. The in vitro as well as ex vivo experiments were performed and analysed using HPLC with spectrofluorimetric and mass-spectrometric detection. In all H. contortus strains, 4 different FLU metabolites were detected: FLU with a reduced carbonyl group (FLU-R), glucose conjugate of FLU-R and 2 glucose conjugates of FLU. In the resistant strains, the ex vivo formation of all FLU metabolites was significantly higher than in the susceptible ISE strain. The multi-resistant WR strain formed approximately 5 times more conjugates of FLU than the susceptible ISE strain. The in vitro data also showed significant differences in FLU metabolism, in the activities of UDP-glucosyltransferase and several carbonyl-reducing enzymes between the susceptible and resistant H. contortus strains. The altered activities of certain detoxifying enzymes might protect the parasites against the toxic effect of the drugs as well as contribute to drug-resistance in these parasites.
Bioresource Technology | 2013
Radka Podlipná; Lenka Skálová; Helena Seidlová; Barbora Szotáková; Vladimír Kubíček; Lucie Stuchlíková; Robert Jirásko; Tomáš Vaněk; Ivan Vokřál
Benzimidazole anthelmintics, the drugs against parasitic worms, are widely used in human as well as veterinary medicine. Following excretion, these substances may persist in the environment and impact non-target organisms. In order to test phytoremediation as a possible tool for detoxification of anthelmintics in environment, the biotransformation pathways of albendazole (ABZ) and flubendazole (FLU) were studied in reed (Phragmites australis) in vitro. Reed cells were able to uptake and biotransform both anthelmintics. Ten ABZ metabolites and five FLU metabolites were found. Some atypical biotransformation reactions (formation of glucosylglucosides, acetylglucosides and xylosylglucosides), which have not been described previously, were identified. Based on the obtained results, the schemes of metabolic pathways of ABZ and FLU in reed were proposed. Most of ABZ and FLU metabolites can be considered as anthelmintically less active; therefore uptake and biotransformation of these anthelmintics by reed could be useful for decrease of their toxicity in environment.
Drug Testing and Analysis | 2014
Lucie Stuchlíková; Robert Jirásko; Ivan Vokřál; Martin Valát; Jiří Lamka; Barbora Szotáková; Michal Holčapek; Lenka Skálová
Monepantel (MOP) is a new anthelmintic drug intended for the treatment and control of gastrointestinal roundworms (nematodes) infection and associated disease in sheep. The aim of our study was to find out metabolic pathways of MOP in sheep in vivo and in its parasite Haemonchus contortus ex vivo. MOP biotransformation in two H. contortus strains with different sensitivity to anthelmintics was also compared. Ultra high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) technique is used for the identification of MOP metabolites in ovine urine, faeces, and nematodes. MOP biotransformation study in sheep in vivo led to the identification of 13 MOP metabolites; 7 of them have not been described previously in in vitro study. The study of MOP biotransformation in H. contorus ex vivo reveals four MOP metabolites. The nitrile hydrolysis as a new biotransformation pathway in helminths ex vivo is reported here for the first time. Unlike sheep, H. contorus nematodes are not able to metabolize MOP via phase II biotransformation. Nematodes of resistant White river (WR) strain form more types of MOP metabolites than nematodes of sensitive inbred susceptible Edinburgh (ISE) strain. Based on obtained results, schemes of metabolic pathways of MOP in sheep and nematodes are proposed.
Drug Metabolism Reviews | 2015
Hana Bártíková; Lenka Skálová; Lucie Stuchlíková; Ivan Vokřál; Tomáš Vaněk; Radka Podlipná
Abstract Many various xenobiotics permanently enter plants and represent potential danger for their organism. For that reason, plants have evolved extremely sophisticated detoxification systems including a battery of xenobiotic-metabolizing enzymes. Some of them are similar to those in humans and animals, but there are several plant-specific ones. This review briefly introduces xenobiotic-metabolizing enzymes in plants and summarizes present information about their action toward veterinary drugs. Veterinary drugs are used worldwide to treat diseases and protect animal health. However, veterinary drugs are also unwantedly introduced into environment mostly via animal excrements, they persist in the environment for a long time and may impact on the non-target organisms. Plants are able to uptake, transform the veterinary drugs to non- or less-toxic compounds and store them in the vacuoles and cell walls. This ability may protect not only plant themselves but also other organisms, predominantly invertebrates and wild herbivores. The aim of this review is to emphasize the importance of plants in detoxification of veterinary drugs in the environment. The results of studies, which dealt with transport and biotransformation of veterinary drugs in plants, are summarized and evaluated. In conclusion, the risks and consequences of veterinary drugs in the environment and the possibilities of phytoremediation technologies are considered and future perspectives are outlined.
Trends in Parasitology | 2016
Petra Matoušková; Ivan Vokřál; Jiří Lamka; Lenka Skálová
Xenobiotic-metabolizing enzymes (XMEs) modulate the biological activity and behavior of many drugs, including anthelmintics. The effects of anthelmintics can often be abolished by XMEs when the drugs are metabolized to an inefficient compound. XMEs therefore play a significant role in anthelmintic efficacy. Moreover, differences in XMEs between helminths are reflected by differences in anthelmintic metabolism between target species. Taking advantage of the newly sequenced genomes of many helminth species, progress in this field has been remarkable. The present review collects up to date information regarding the most important XMEs (phase I and phase II biotransformation enzymes; efflux transporters) in helminths. The participation of these XMEs in anthelmintic metabolism and their possible roles in drug resistance are evaluated.
Parasitology | 2013
Ivan Vokřál; Veronika Jedličková; Robert Jirásko; Lucie Stuchlíková; Hana Bártíková; Lenka Skálová; Jiří Lamka; Michal Holčapek; Barbora Szotáková
Ivermectin (IVE), one of the most important anthelmintics, is often used in the treatment of haemonchosis in ruminants. The objective of our work was (1) to find and identify phase I and II metabolites of IVE formed by the Barbers pole worm (Haemonchus contortus), and (2) to compare IVE metabolites in helminths with IVE biotransformation in sheep (Ovis aries) as host species. Ultrahigh-performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS) was used for this purpose. During in vitro incubations, microsomes (from adult worms or from ovine liver) and a primary culture of ovine hepatocytes were incubated with IVE. In the ex vivo study, living H. contortus adults were incubated in the presence of 1 μM IVE for 24 h. The results showed that the H. contortus enzymatic system is not able to metabolize IVE. On the other hand, 7 different phase I as well as 9 phase II IVE metabolites were detected in ovine samples using UHPLC/MS/MS analyses. Most of these metabolites have not been described before. Haemonchus contortus is not able to deactivate IVE through biotransformation; therefore, biotransformation does not contribute to the development of IVE-resistance in the Barbers pole worm.
Veterinary Parasitology | 2012
Ivan Vokřál; Robert Jirásko; Veronika Jedličková; Hana Bártíková; Lenka Skálová; Jiří Lamka; Michal Holčapek; Barbora Szotáková
Biotransformation enzymes can, to a certain extent, protect parasitic worms against the toxic effects of anthelmintics and can contribute to drug-resistance development. The objective of our work was (1) to find and identify phase I and II metabolites of the anthelmintic praziquantel (PZQ) formed by the lancet fluke (Dicrocoelium dendriticum) and the rat tapeworm (Hymenolepis diminuta) and (2) to compare PZQ metabolites in helminths with PZQ biotransformation in rat as host species. Ultra high performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS) was used for this purpose. During in vitro incubations, mitochondria-like and microsomes-like fractions (prepared from homogenates of adult worms or from rat liver homogenate) were incubated with 10 and 100 μM PZQ. Liquid/liquid extraction was used for samples during in vitro experiments. In the ex vivo study, living D. dendriticum and H. diminuta adults were incubated in RPMI-1640 medium in the presence of 50 nM or 100 nM PZQ for 24h. After incubation, the worms were removed from the medium and homogenized. Homogenates of worms, medium from the incubation of worms or rat hepatocytes and rat urine (collected during 24h after oral PZQ administration) were separately extracted using solid-phase extraction. The results showed that both D. dendriticum and H. diminuta enzymatic systems are not able to metabolize PZQ. On the other hand, thirty one different phase I and four phase II PZQ metabolites were detected in rat samples using UHPLC/MS/MS analyses. These results show that our experimental helminths, as the members of tapeworm and fluke groups of parasites, are not able to deactivate PZQ, and that the biotransformation enzymes of the studied helminths do not contribute to PZQ-resistance.
Xenobiotica | 2010
Hana Bártíková; Ivan Vokřál; Lenka Skálová; Jiří Lamka; Barbora Szotáková
Dicrocoeliosis, a parasitic infection caused by Dicrocoelium dendriticum (lancet fluke), is often treated by the anthelmintic drug albendazole (ABZ). In the lancet fluke, ABZ metabolism via enzymatic sulphoxidation was found, but no information about ABZ oxidases has been available. The aim of our project was to find out which enzyme of the lancet fluke is responsible for ABZ sulphoxidation, as well as to assay the activities of oxidation enzymes. We also studied whether ex vivo 24-h exposures of flukes to ABZ or its sulphoxide (ABZ.SO) would alter ABZ sulphoxidation rate and the activities of tested enzymes. In subcellular fractions from flukes, marked activities of peroxidase (Px), glutathione Px (GPx), catalase (CAT), superoxide dismutase, and thioredoxin glutathione reductase were found. Using specific inhibitors, the participation of flavine monooxygenases in ABZ-oxidation was found. The ex vivo exposition of flukes to ABZ or ABZ.SO did not change the rate of ABZ sulphoxidation in vitro, but the ex vivo exposure of flukes to anthelmintics increased Px, CAT, and GPx activity. The modulation of these enzyme activities after ABZ or ABZ.SO exposition may be characteristic of the parasite’s protective mechanism against oxidative stress caused by drug treatment.