Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baris Tursun is active.

Publication


Featured researches published by Baris Tursun.


Science | 2011

Direct conversion of C. elegans germ cells into specific neuron types

Baris Tursun; Tulsi Patel; Paschalis Kratsios; Oliver Hobert

Removal of a chromatin factor allows transcription factors to reprogram germ cells into neurons. The ability of transcription factors to directly reprogram the identity of cell types is usually restricted and is defined by cellular context. Through the ectopic expression of single Caenorhabditis elegans transcription factors, we found that the identity of mitotic germ cells can be directly converted into that of specific neuron types: glutamatergic, cholinergic, or GABAergic. This reprogramming event requires the removal of the histone chaperone LIN-53 (RbAp46/48 in humans), a component of several histone remodeling and modifying complexes, and this removal can be mimicked by chemical inhibition of histone deacetylases. Our findings illustrate the ability of germ cells to be directly converted into individual, terminally differentiated neuron types and demonstrate that a specific chromatin factor provides a barrier for cellular reprogramming.


PLOS ONE | 2009

A Toolkit and Robust Pipeline for the Generation of Fosmid-Based Reporter Genes in C. elegans

Baris Tursun; Luisa Cochella; Inés Carrera; Oliver Hobert

Engineering fluorescent proteins into large genomic clones, contained within BACs or fosmid vectors, is a tool to visualize and study spatiotemporal gene expression patterns in transgenic animals. Because these reporters cover large genomic regions, they most likely capture all cis-regulatory information and can therefore be expected to recapitulate all aspects of endogenous gene expression. Inserting tags at the target gene locus contained within genomic clones by homologous recombination (“recombineering”) represents the most straightforward method to generate these reporters. In this methodology paper, we describe a simple and robust pipeline for recombineering of fosmids, which we apply to generate reporter constructs in the nematode C. elegans, whose genome is almost entirely covered in an available fosmid library. We have generated a toolkit that allows for insertion of fluorescent proteins (GFP, YFP, CFP, VENUS, mCherry) and affinity tags at specific target sites within fosmid clones in a virtually seamless manner. Our new pipeline is less complex and, in our hands, works more robustly than previously described recombineering strategies to generate reporter fusions for C. elegans expression studies. Furthermore, our toolkit provides a novel recombineering cassette which inserts a SL2-spliced intercistronic region between the gene of interest and the fluorescent protein, thus creating a reporter controlled by all 5′ and 3′ cis-acting regulatory elements of the examined gene without the direct translational fusion between the two. With this configuration, the onset of expression and tissue specificity of secreted, sub-cellular compartmentalized or short-lived gene products can be easily detected. We describe other applications of fosmid recombineering as well. The simplicity, speed and robustness of the recombineering pipeline described here should prompt the routine use of this strategy for expression studies in C. elegans.


Cancer Research | 2009

Regulation of Estrogen-Dependent Transcription by the LIM Cofactors CLIM and RLIM in Breast Cancer

Steven A. Johnsen; Cenap Güngör; Tanja Prenzel; Sabine Riethdorf; Lutz Riethdorf; Naoko Taniguchi-Ishigaki; Thomas Rau; Baris Tursun; J. David Furlow; Guido Sauter; Martin Scheffner; Klaus Pantel; Frank Gannon; Ingolf Bach

Mammary oncogenesis is profoundly influenced by signaling pathways controlled by estrogen receptor alpha (ERalpha). Although it is known that ERalpha exerts its oncogenic effect by stimulating the proliferation of many human breast cancers through the activation of target genes, our knowledge of the underlying transcriptional mechanisms remains limited. Our published work has shown that the in vivo activity of LIM homeodomain transcription factors (LIM-HD) is critically regulated by cofactors of LIM-HD proteins (CLIM) and the ubiquitin ligase RING finger LIM domain-interacting protein (RLIM). Here, we identify CLIM and RLIM as novel ERalpha cofactors that colocalize and interact with ERalpha in primary human breast tumors. We show that both cofactors associate with estrogen-responsive promoters and regulate the expression of endogenous ERalpha target genes in breast cancer cells. Surprisingly, our results indicate opposing functions of LIM cofactors for ERalpha and LIM-HDs: whereas CLIM enhances transcriptional activity of LIM-HDs, it inhibits transcriptional activation mediated by ERalpha on most target genes in vivo. In turn, the ubiquitin ligase RLIM inhibits transcriptional activity of LIM-HDs but enhances transcriptional activation of endogenous ERalpha target genes. Results from a human breast cancer tissue microarray of 1,335 patients revealed a highly significant correlation of elevated CLIM levels to ER/progesterone receptor positivity and poor differentiation of tumors. Combined, these results indicate that LIM cofactors CLIM and RLIM regulate the biological activity of ERalpha during the development of human breast cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Proteasomal selection of multiprotein complexes recruited by LIM homeodomain transcription factors

Cenap Güngör; Naoko Taniguchi-Ishigaki; Hong Ma; Alexander Drung; Baris Tursun; Heather P. Ostendorff; Michael Bossenz; Catherina G. Becker; Thomas Becker; Ingolf Bach

Complexes composed of multiple proteins regulate most cellular functions. However, our knowledge about the molecular mechanisms governing the assembly and dynamics of these complexes in cells remains limited. The in vivo activity of LIM homeodomain (LIM-HD) proteins, a class of transcription factors that regulates neuronal development, depends on the high-affinity association of their LIM domains with cofactor of LIM homeodomain proteins (LIM-HDs) (CLIM, also known as Ldb or NLI). CLIM cofactors recruit single-stranded DNA-binding protein 1 (SSDP1, also known as SSBP3), and this interaction is important for the activation of the LIM-HD/CLIM protein complex in vivo. Here, we identify a cascade of specific protein interactions that protect LIM-HD multiprotein complexes from proteasomal degradation. In this cascade, CLIM stabilizes LIM-HDs, and SSDP1 stabilizes CLIM. Furthermore, we show that stabilizing cofactors prevent binding of ubiquitin ligases to multiple protein interaction domains in LIM-HD recruited protein complexes. Together, our results indicate a combinatorial code that selects specific multiprotein complexes via proteasomal degradation in cells with broad implications for the assembly and specificity of multiprotein complexes.


Development | 2009

The C. elegans Tailless/TLX transcription factor nhr-67 controls neuronal identity and left/right asymmetric fate diversification.

Sumeet Sarin; Celia Antonio; Baris Tursun; Oliver Hobert

An understanding of the molecular mechanisms of cell fate determination in the nervous system requires the elucidation of transcriptional regulatory programs that ultimately control neuron-type-specific gene expression profiles. We show here that the C. elegans Tailless/TLX-type, orphan nuclear receptor NHR-67 acts at several distinct steps to determine the identity and subsequent left/right (L/R) asymmetric subtype diversification of a class of gustatory neurons, the ASE neurons. nhr-67 controls several broad aspects of sensory neuron development and, in addition, triggers the expression of a sensory neuron-type-specific selector gene, che-1, which encodes a zinc-finger transcription factor. Subsequent to its induction of overall ASE fate, nhr-67 diversifies the fate of the two ASE neurons ASEL and ASER across the L/R axis by promoting ASER and inhibiting ASEL fate. This function is achieved through direct expression activation by nhr-67 of the Nkx6-type homeobox gene cog-1, an inducer of ASER fate, that is inhibited in ASEL through the miRNA lsy-6. Besides controlling bilateral and asymmetric aspects of ASE development, nhr-67 is also required for many other neurons of diverse lineage history and function to appropriately differentiate, illustrating the broad and diverse use of this type of transcription factor in neuronal development.


Development | 2010

The Groucho ortholog UNC-37 interacts with the short Groucho-like protein LSY-22 to control developmental decisions in C. elegans.

Eileen B. Flowers; Richard J. Poole; Baris Tursun; Enkelejda Bashllari; Itsik Pe'er; Oliver Hobert

Transcriptional co-repressors of the Groucho/TLE family are important regulators of development in many species. A subset of Groucho/TLE family members that lack the C-terminal WD40 domains have been proposed to act as dominant-negative regulators of Groucho/TLE proteins, yet such a role has not been conclusively proven. Through a mutant screen for genes controlling a left/right asymmetric cell fate decision in the nervous system of the nematode C. elegans, we have retrieved loss-of-function alleles in two distinct loci that display identical phenotypes in neuronal fate specification and in other developmental contexts. Using the novel technology of whole-genome sequencing, we find that these loci encode the C. elegans ortholog of Groucho, UNC-37, and, surprisingly, a short Groucho-like protein, LSY-22, that is similar to truncated Groucho proteins in other species. Besides their phenotypic similarities, unc-37 and lsy-22 show genetic interactions and UNC-37 and LSY-22 proteins also physically bind to each other in vivo. Our findings suggest that rather than acting as negative regulators of Groucho, small Groucho-like proteins may promote Groucho function. We propose that Groucho-mediated gene regulatory events involve heteromeric complexes of distinct Groucho-like proteins.


Genes & Development | 2017

Neuronal inhibition of the autophagy nucleation complex extends life span in post-reproductive C. elegans

Thomas Wilhelm; Jonathan Byrne; Rebeca Medina; Ena Kolundžić; Johannes Geisinger; Martina Hajduskova; Baris Tursun; Holger Richly

Autophagy is a ubiquitous catabolic process that causes cellular bulk degradation of cytoplasmic components and is generally associated with positive effects on health and longevity. Inactivation of autophagy has been linked with detrimental effects on cells and organisms. The antagonistic pleiotropy theory postulates that some fitness-promoting genes during youth are harmful during aging. On this basis, we examined genes mediating post-reproductive longevity using an RNAi screen. From this screen, we identified 30 novel regulators of post-reproductive longevity, including pha-4 Through downstream analysis of pha-4, we identified that the inactivation of genes governing the early stages of autophagy up until the stage of vesicle nucleation, such as bec-1, strongly extend both life span and health span. Furthermore, our data demonstrate that the improvements in health and longevity are mediated through the neurons, resulting in reduced neurodegeneration and sarcopenia. We propose that autophagy switches from advantageous to harmful in the context of an age-associated dysfunction.


eLife | 2016

Increasing Notch signaling antagonizes PRC2-mediated silencing to promote reprograming of germ cells into neurons

Stefanie Seelk; Irene Adrian-Kalchhauser; Balázs Hargitai; Martina Hajduskova; Silvia Gutnik; Baris Tursun; Rafal Ciosk

Cell-fate reprograming is at the heart of development, yet very little is known about the molecular mechanisms promoting or inhibiting reprograming in intact organisms. In the C. elegans germline, reprograming germ cells into somatic cells requires chromatin perturbation. Here, we describe that such reprograming is facilitated by GLP-1/Notch signaling pathway. This is surprising, since this pathway is best known for maintaining undifferentiated germline stem cells/progenitors. Through a combination of genetics, tissue-specific transcriptome analysis, and functional studies of candidate genes, we uncovered a possible explanation for this unexpected role of GLP-1/Notch. We propose that GLP-1/Notch promotes reprograming by activating specific genes, silenced by the Polycomb repressive complex 2 (PRC2), and identify the conserved histone demethylase UTX-1 as a crucial GLP-1/Notch target facilitating reprograming. These findings have wide implications, ranging from development to diseases associated with abnormal Notch signaling. DOI: http://dx.doi.org/10.7554/eLife.15477.001


BMC Biology | 2016

A tissue-specific protein purification approach in Caenorhabditis elegans identifies novel interaction partners of DLG-1/Discs large

Selma Waaijers; Javier Muñoz; Christian W. H. Berends; João J. Ramalho; Soenita S. Goerdayal; Teck Yew Low; Adja D. Zoumaro-Djayoon; Michael Hoffmann; Thijs Koorman; Roderick P. Tas; Martin Harterink; Stefanie Seelk; Jana Kerver; Casper C. Hoogenraad; Olaf Bossinger; Baris Tursun; Sander van den Heuvel; Albert J. R. Heck; Mike Boxem

BackgroundAffinity purification followed by mass spectrometry (AP/MS) is a widely used approach to identify protein interactions and complexes. In multicellular organisms, the accurate identification of protein complexes by AP/MS is complicated by the potential heterogeneity of complexes in different tissues. Here, we present an in vivo biotinylation-based approach for the tissue-specific purification of protein complexes from Caenorhabditis elegans. Tissue-specific biotinylation is achieved by the expression in select tissues of the bacterial biotin ligase BirA, which biotinylates proteins tagged with the Avi peptide.ResultsWe generated N- and C-terminal tags combining GFP with the Avi peptide sequence, as well as four BirA driver lines expressing BirA ubiquitously and specifically in the seam and hyp7 epidermal cells, intestine, or neurons. We validated the ability of our approach to identify bona fide protein interactions by identifying the known LGL-1 interaction partners PAR-6 and PKC-3. Purification of the Discs large protein DLG-1 identified several candidate interaction partners, including the AAA-type ATPase ATAD-3 and the uncharacterized protein MAPH-1.1. We have identified the domains that mediate the DLG-1/ATAD-3 interaction, and show that this interaction contributes to C. elegans development. MAPH-1.1 co-purified specifically with DLG-1 purified from neurons, and shared limited homology with the microtubule-associated protein MAP1A, a known neuronal interaction partner of mammalian DLG4/PSD95. A CRISPR/Cas9-engineered GFP::MAPH-1.1 fusion was broadly expressed and co-localized with microtubules.ConclusionsThe method we present here is able to purify protein complexes from specific tissues. We uncovered a series of DLG-1 interactors, and conclude that ATAD-3 is a biologically relevant interaction partner of DLG-1. Finally, we conclude that MAPH-1.1 is a microtubule-associated protein of the MAP1 family and a candidate neuron-specific interaction partner of DLG-1.


Current Opinion in Genetics & Development | 2012

Cellular reprogramming processes in Drosophila and C. elegans

Baris Tursun

The identity of individual cell types in a multicellular organism appears to be continuously maintained through active processes but is not irreversible. Changes in the identity of individual cell types can be brought about through ectopic mis-expression of regulatory factors, but in a number of cases also occurs in normal development. I will review here these natural cellular reprogramming processes occurring in the invertebrate model organisms Caenorhabditis elegans and Drosophila melanogaster. Furthermore, I will discuss the issue of why only certain cell types can be converted during induced reprogramming processes evoked by ectopic expression of regulatory factors and how recent work in model systems have shown that this cellular context-dependency can be manipulated.

Collaboration


Dive into the Baris Tursun's collaboration.

Top Co-Authors

Avatar

Oliver Hobert

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Ena Kolundzic

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Stefanie Seelk

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Scott A. Lacadie

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Andreas Ofenbauer

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Antje Hirsekorn

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Ingolf Bach

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Luisa Cochella

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alexander Glahs

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Altuna Akalin

Max Delbrück Center for Molecular Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge