Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barrie W. Bycroft is active.

Publication


Featured researches published by Barrie W. Bycroft.


Microbiology | 1997

Quorum sensing and Chromobacterium violaceum : exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones

Kay H. McClean; Michael K. Winson; Leigh Fish; Adrian Taylor; Siri Ram Chhabra; Miguel Cámara; Mavis Daykin; John H. Lamb; Simon Swift; Barrie W. Bycroft; Gordon S. A. B. Stewart; Paul Williams

Quorum sensing relies upon the interaction of a diffusible signal molecule with a transcriptional activator protein to couple gene expression with cell population density. In Gram-negative bacteria, such signal molecules are usually N-acylhomoserine lactones (AHLs) which differ in the structure of their N-acyl side chains. Chromobacterium violaceum, a Gram-negative bacterium commonly found in soil and water, produces the characteristic purple pigment violacein. Previously the authors described a violacein-negative, mini-Tn5 mutant of C. violaceum (CV026) in which pigment production can be restored by incubation with supernatants from the wild-type strain. To develop this mutant as a general biosensor for AHLs, the natural C. violaceum AHL molecule was first chemically characterized. By using solvent extraction, HPLC and mass spectrometry, a single AHL, N-hexanoyl-L-homoserine lactone (HHL), was identified in wild-type C. violaceum culture supernatants which was absent from CV026. Since the production of violacein constitutes a simple assay for the detection of AHLs, we explored the ability of CV026 to respond to a series of synthetic AHL and N-acylhomocysteine thiolactone (AHT) analogues. In CV026, violacein is inducible by all the AHL and AHT compounds evaluated with N-acyl side chains from C4 to C8 in length, with varying degrees of sensitivity. Although AHL compounds with N-acyl side chains from C10 to C14 are unable to induce violacein production, if an activating AHL (e.g. HHL) is incorporated into the agar, these long-chain AHLs can be detected by their ability to inhibit violacein production. The versatility of CV026 in facilitating detection of AHL mixtures extracted from culture supernatants and separated by thin-layer chromatography is also demonstrated. These simple bioassays employing CV026 thus greatly extend the ability to detect a wide spectrum of AHL signal molecules.


Molecular Microbiology | 2002

Quorum‐sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram‐negative bacteria

Matthew T. G. Holden; Siri Ram Chhabra; Rocky de Nys; Paul Stead; Nigel J. Bainton; Philip J. Hill; Mike Manefield; Naresh Kumar; Maurice Labatte; Dacre England; Scott A. Rice; Michael Givskov; George P. C. Salmond; Gordon S. A. B. Stewart; Barrie W. Bycroft; Staffan Kjelleberg; Paul Williams

In cell‐free Pseudomonas aeruginosa culture supernatants, we identified two compounds capable of activating an N‐acylhomoserine lactone (AHL) biosensor. Mass spectrometry and NMR spectroscopy revealed that these compounds were not AHLs but the diketopiperazines (DKPs), cyclo(ΔAla‐l‐Val) and cyclo(l‐Pro‐l‐Tyr) respectively. These compounds were also found in cell‐free supernatants from Proteus mirabilis, Citrobacter freundii and Enterobacter agglomerans [cyclo(ΔAla‐l‐Val) only]. Although both DKPs were absent from Pseudomonas fluorescens and Pseudomonas alcaligenes, we isolated, from both pseudomonads, a third DKP, which was chemically characterized as cyclo(l‐Phe‐l‐Pro). Dose–response curves using a LuxR‐based AHL biosensor indicated that cyclo(ΔAla‐l‐Val), cyclo(l‐Pro‐l‐Tyr) and cyclo(l‐Phe‐l‐Pro) activate the biosensor in a concentration‐dependent manner, albeit at much higher concentrations than the natural activator N‐(3‐oxohexanoyl)‐l‐homoserine lactone (3‐oxo‐C6‐HSL). Competition studies showed that cyclo(ΔAla‐l‐Val), cyclo(l‐Pro‐l‐Tyr) and cyclo(l‐Phe‐l‐Pro) antagonize the 3‐oxo‐C6‐HSL‐mediated induction of bioluminescence, suggesting that these DKPs may compete for the same LuxR‐binding site. Similarly, DKPs were found to be capable of activating or antagonizing other LuxR‐based quorum‐sensing systems, such as the N‐butanoylhomoserine lactone‐dependent swarming motility of Serratia liquefaciens. Although the physiological role of these DKPs has yet to be established, their activity suggests the existence of cross talk among bacterial signalling systems.


Molecular Microbiology | 1995

Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1.

Amel Latifi; Michael K. Winson; Maryline Foglino; Barrie W. Bycroft; Gordon S. A. B. Stewart; Andrée Lazdunski; Paul Williams

In Pseudomonas aeruginosa PAO1, expression of elastase is dependent upon an interaction between the positive transcriptional activator LasR and the autoinducer molecule N(3‐oxododecanoyl)‐l‐homoserine lactone (OdDHL), the synthesis of which is directed by LasI. Previously we have shown that in PAN067, an elastase‐negative mutant of PAO1, elastase production can be restored to some extent by addition of exogenous N(3‐oxohexanoyl)‐l‐homoserine lactone (OHHL). Here we report that PAN067 is also defective in the production of alkaline protease, haemolysin, cyanide, pyocyanin and autoinducer(s). As neither addition of exogenous OdDHL nor introduction of IasR restored PAN067 to the parental phenotype, we sought to complement PAN067 with PAO1 DNA. From a cosmid library, a 2 kb DNA fragment was identified which re‐established production of autoinducer(s) and exoproducts in PAN067. From the nucleotide sequence of this fragment, two genes termed rhIR and rhII were identified. RhII is responsible for autoinducer synthesis and shares 31% homology with LasI; RhIR has been previously identified in P. aeruginosa strain DSM2659 as a regulator of rhamnolipid biosynthesis and shares 28% identity with LasR. These data provide clear evidence that multiple families of quorum‐sensing modulons interactively regulate gene expression in P. aeruginosa.


The EMBO Journal | 1993

The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa.

S Jones; B Yu; Nigel J. Bainton; M. Birdsall; Barrie W. Bycroft; Siri Ram Chhabra; A J Cox; P Golby; Philip J. Reeves; S Stephens

Erwinia carotovora and Pseudomonas aeruginosa secrete exoenzymes that contribute to the pathogenesis of plant and mammalian infections respectively. E.carotovora mutants defective in synthesis of the pectinase, cellulase and protease exoenzymes were isolated and classified into two groups. Group 2 mutants were found to be defective in the production of a small freely diffusible molecule, N‐3‐(oxohexanoyl)‐L‐homoserine, lactone (HSL), and were avirulent. Addition of exogenous HSL to these group 2 mutants restores synthesis of the exoenzymes and virulence in planta. Of the exoenzymes of P.aeruginosa the metalloprotease, elastase, is an established virulence determinant. Mutants of P.aeruginosa that are defective in elastase production have been isolated and were again found to fall into two groups. Analogous to the group 2 mutants of E.carotovora, group 2 mutants of P. aeruginosa are defective in the synthesis of HSL and exogenous HSL restores elastase production. HSL has now been linked to the control of bioluminescence in Vibrio fischeri, carbapenem antibiotic production of E.carotovora and the above exoenzyme virulence determinants. This information significantly enhances our understanding of the extent and nature of pheromone mediated gene expression control in prokaryotes.


Molecular Microbiology | 1995

The bacterial ‘enigma’: cracking the code of cell–cell communication

George P. C. Salmond; Barrie W. Bycroft; G. S. A. B. Stewart; Paul Williams

In recent years it has become clear that the production of N‐acyl homoserine lactones (N‐AHLs) is widespread in Gram‐negative bacteria. These molecules act as diffusible chemical communication signals (bacterial pheromones) which regulate diverse physiological processes including bioluminescence, antibiotic production, piasmid conjugal transfer and synthesis of exoenzyme virulence factors in plant and animal pathogens. The paradigm for N‐AHL production is in the bioluminescence (lux) phenotype of Photobacterium fischeri (formerly classified as Vibrio fischeri) where the signalling molecule N‐(3‐oxohexanoyl)‐L‐homoserine lactone (OHHL) is synthesized by the action of the Luxl protein. OHHL is thought to bind to the LuxR protein, allowing it to act as a positive transcriptional activator in an autoinduction process that physiologically couples cell density (and growth phase) to the expression of the bioluminescence genes. Based on the growing information on Luxl and LuxR homologues in other N‐AHL‐producing bacterial species such as Erwinia carotovora, Pseudomonas aeruginosa, Yersinia enterocolitica, Agrobacterium tumefaciens and Rhizobium legumino‐sarum, it seems that analogues of the P. fischeri lux autoinducer sensing system are widely distributed in bacteria. The general physiological function of these simple chemical signalling systems appears to be the modulation of discrete and diverse metabolic processes in concert with cell density. In an evolutionary sense, the elaboration and action of these bacterial pheromones can be viewed as an example of multi‐cellularity in prokaryotic populations.


Molecular Microbiology | 1996

Involvement of N‐acyl‐l‐homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens

Leo Eberl; Michael K. Winson; Claus Sternberg; Gordon S. A. B. Stewart; Gunna Christiansen; Siri Ram Chhabra; Barrie W. Bycroft; Paul Williams; Søren Molin; Michael Givskov

Several bacterial species possess the ability to differentiate into highly motile swarmer cells capable of rapid surface colonization. In Serratia liquefaciens, we demonstrate that initiation of swarmer‐cell differentiation involves diffusible signal molecules that are released into the growth medium. Using high‐performance liquid chromatography (HPLC), high resolution mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, we identified N‐butanoyl‐l‐homoserine lactone (BHL) and N‐hexanoyl‐l‐homoserine lactone (HHL) in cell‐free Serratia culture supernatants. BHL and HHL are present in a ratio of approximately 10:1 and their structures were unequivocally confirmed by chemical synthesis. The swrlswarmer initiation) gene, the predicted translation product of which exhibits substantial homology to the Luxl family of putative Nacyl homoserine lactone (AHL) synthases is responsible for directing synthesis of both BHL and HHL. In an swrl mutant, swarming motility is abolished but can be restored by the addition of an exogenous AHL. These results add swarming motility to the rapidly expanding list of phenotypes known to be controlled through quorum sensing.


Gene | 1992

A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia

Nigel J. Bainton; Barrie W. Bycroft; Siri Ram Chhabra; Paul Stead; Linden Gledhill; Philip J. Hill; Catherine E. D. Rees; Michael K. Winson; George P. C. Salmond; Gordon S. A. B. Stewart; Paul Williams

Micro-organisms have evolved complex and diverse mechanisms to sense environmental changes. Activation of a sensory mechanism typically leads to alterations in gene expression facilitating an adaptive response. This may take several forms, but many are mediated by response-regulator proteins. The luxR-encoded protein (LuxR) has previously been characterised as a member of the response-regulator superfamily and is known to respond to the small diffusible autoinducer signal molecule N-(beta-ketocaproyl) homoserine lactone (KHL). Observed previously in only a few marine bacteria, we now report that KHL is in fact produced by a diverse group of terrestrial bacteria. In one of these (Erwinia carotovora), we show that it acts as a molecular control signal for the expression of genes controlling carbapenem antibiotic biosynthesis. This represents the first substantive evidence to support the previous postulate that the lux autoinducer, KHL, is widely involved in bacterial signalling.


Molecular Microbiology | 1993

A novel strategy for the isolation of luxl homologues: evidence for the widespread distribution of a LuxR:Luxl superfamily in enteric bacteria

Simon Swift; Michael K. Winson; P. F. Chan; Nigel J. Bainton; M. Birdsall; Philip J. Reeves; Catherine E. D. Rees; Siri Ram Chhabra; Philip J. Hill; John P. Throup; Barrie W. Bycroft; George P. C. Salmond; Paul Williams; Gordon S. A. B. Stewart

The pheromone N‐(3‐oxohexanoyl)‐L‐homoserine lactone (OHHL) regulates expression of bioluminescence in the marine bacterium Vibrio fischeri, the production of carbapenem antibiotic in Erwinia carotovora and exoenzymes in both E. carotovora and Pseudomonas aeruginosa. A characteristic feature of this regulatory mechanism in V. fischeri is that it is cell density‐dependent, reflecting the need to accumulate sufficient pheromone to trigger the induction of gene expression. Using a lux plasmid‐based bioluminescent sensor for OHHL, pheromone production by E. carotovora, Enterobacter agglomerans, Hafnia alvei, Rahnella aquatilis and Serratia marcescens has been demonstrated and shown also to be cell density‐dependent. Production of OHHL implies the presence in these bacteria of a gene equivalent to luxl. Chromosomal banks from all five enteric bacteria have yielded clones capable of eliciting OHHL production when expressed in Escherichia coli. The luxl homologue from both E. carotovora (carl) and E. agglomerans (eagl) were characterized at the DNA sequence level and the deduced protein sequences have only 25% identity with the V. fischeri Luxl. Despite this, carl, eagl and luxl are shown to be biologically equivalent. An insertion mutant of eagl demonstrates that this gene is essential for OHHL production in E. agglomerans.


The EMBO Journal | 2000

N‐acyl homoserine lactone binding to the CarR receptor determines quorum‐sensing specificity in Erwinia

Martin Welch; Daniel E. Todd; Neil A. Whitehead; Simon J. McGowan; Barrie W. Bycroft; George P. C. Salmond

Quorum sensing via an N‐acyl homoserine lactone (HSL) pheromone controls the biosynthesis of a carbapenem antibiotic in Erwinia carotovora. Transcription of the carbapenem biosynthetic genes is dependent on the LuxR‐type activator protein, CarR. Equilibrium binding of a range of HSL molecules, which are thought to activate CarR to bind to its DNA target sequence, was examined using fluorescence quenching, DNA bandshift analysis, limited proteolysis and reporter gene assays. CarR bound the most physiologically relevant ligand, N‐(3‐oxohexanoyl)‐L‐homoserine lactone, with a stoichiometry of two molecules of ligand per dimer of protein and a dissociation constant of 1.8 μM, in good agreement with the concentration of HSL required to activate carbapenem production in vivo. In the presence of HSL, CarR formed a very high molecular weight complex with its target DNA, indicating that the ligand causes the protein to multimerize. Chemical cross‐linking analysis supported this interpretation. Our data show that the ability of a given HSL to facilitate CarR binding to its target DNA sequence is directly proportional to the affinity of the HSL for the protein.


Molecular Microbiology | 2001

Structure, activity and evolution of the group I thiolactone peptide quorum‐sensing system of Staphylococcus aureus

Philip MDowell; Zina Mariam Affas; Caroline Reynolds; Matthew T. G. Holden; Stewart J. Wood; Sandra Saint; Alan Cockayne; Philip J. Hill; Christine E. R. Dodd; Barrie W. Bycroft; Weng C. Chan; Paul Williams

In Staphylococcus aureus, the agr locus is responsible for controlling virulence gene expression via quorum sensing. As the blockade of quorum sensing offers a novel strategy for attenuating infection, we sought to gain novel insights into the structure, activity and turnover of the secreted staphylococcal autoinducing peptide (AIP) signal molecules. A series of analogues (including the l‐alanine and d‐amino acid scanned peptides) was synthesized to determine the functionally critical residues within the S. aureus group I AIP. As a consequence, we established that (i) the group I AIP is inactivated in culture supernatants by the formation of the corresponding methionyl sulphoxide; and (ii) the group I AIP lactam analogue retains the capacity to activate agr, suggesting that covalent modification of the AgrC receptor is not a necessary prerequisite for agr activation. Although each of the d‐amino acid scanned AIP analogues retained activity, replacement of the endocyclic amino acid residue (aspartate) located C‐terminally to the central cysteine with alanine converted the group I AIP from an activator to a potent inhibitor. The screening of clinical S. aureus isolates for novel AIP groups revealed a variant that differed from the group I AIP by a single amino acid residue (aspartate to tyrosine) in the same position defined as critical by alanine scanning. Although this AIP inhibits group I S. aureus strains, the producer strains possess a functional agr locus dependent on the endogenous peptide and, as such, constitute a fourth S. aureus AIP pheromone group (group IV). The addition of exogenous synthetic AIPs to S. aureus inhibited the production of toxic shock syndrome toxin (TSST‐1) and enterotoxin C3, confirming the potential of quorum‐sensing blockade as a therapeutic strategy.

Collaboration


Dive into the Barrie W. Bycroft's collaboration.

Top Co-Authors

Avatar

Paul Williams

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weng C. Chan

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan J. Mather

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Miguel Cámara

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge