Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barry Lefer is active.

Publication


Featured researches published by Barry Lefer.


Geophysical Research Letters | 2001

Unexpected high levels of NO observed at South Pole

D. Davis; J. B. Nowak; G. Chen; M. Buhr; Richard Arimoto; A. Hogan; F. L. Eisele; L. R. Mauldin; David J. Tanner; Richard E. Shetter; Barry Lefer; Peter H. McMurry

Reported here are the first Austral summer measurements of NO at South Pole (SP). They arc unique in that the levels are one to two orders of magnitude higher (i.e., median, 225 pptv) than measured at other polar sites. The available evidence suggests that these elevated levels arc the result of photodenitrification of the snowpack, in conjunction with a very thin atmospheric mixing depth. Important chemical consequences included finding the atmospheric oxidizing power at SP to be an order of magnitude higher than expected.


Journal of Geophysical Research | 1997

Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during February-March 1994: Results from PEM-West B

Robert W. Talbot; Jack E. Dibb; Barry Lefer; J. D. Bradshaw; S. T. Sandholm; D. R. Blake; N. J. Blake; G. W. Sachse; J. E. Collins; B J Heikes; John T. Merrill; G. L. Gregory; Bruce E. Anderson; H. B. Singh; Donald C. Thornton; Alan R. Bandy; R. Pueschel

We present here the chemical composition of outflow from the Asian continent to the atmosphere over the western Pacific basin during the Pacific Exploratory Mission-West (PEM-West B) in February–March 1994. Comprehensive measurements of important tropospheric trace gases and aerosol particulate matter were performed from the NASA DC-8 airborne laboratory. Backward 5 day isentropic trajectories were used to partition the outflow from two major source regions: continental north (>20°N) and continental south (<20°N). Air parcels that had not passed over continental areas for the previous 5 days were classified as originating from an aged marine source. The trajectories and the chemistry together indicated that there was extensive rapid outflow of air parcels at altitudes below 5 km, while aged marine air was rarely encountered and only at <20°N latitude. The outflow at low altitudes had enhancements in common industrial solvent vapors such as C2Cl4, CH3CCl3, and C6H6, intermixed with the combustion emission products C2H2, C2H6, CO, and NO. The mixing ratios of all species were up to tenfold greater in outflow from the continental north compared to the continental south source region, with 210Pb concentrations reaching 38 fCi (10−15 curies) per standard cubic meter. In the upper troposphere we again observed significant enhancements in combustion-derived species in the 8–10 km altitude range, but water-soluble trace gases and aerosol species were depleted. These observations suggest that ground level emissions were lofted to the upper troposphere by wet convective systems which stripped water-soluble components from these air parcels. There were good correlations between C2H2 and CO and C2H6 (r2=0.70–0.97) in these air parcels and much weaker ones between C2H2 and H2O2 or CH3OOH (r2 ≈0.50). These correlations were the strongest in the continental north outflow where combustion inputs appeared to be recent (1–2 days old). Ozone and PAN showed general correlation in these same air parcels but not with the combustion products. It thus appears that several source inputs were intermixed in these upper tropospheric air masses, with possible contributions from European or Middle Eastern source regions. In aged marine air mixing ratios of O3 (≈20 parts per billion by volume) and PAN (≤10 parts per trillion by volume) were nearly identical at <2 km and 10–12 km altitudes due to extensive convective uplifting of marine boundary layer air over the equatorial Pacific even in wintertime. Comparison of the Pacific Exploratory Mission-West A and PEM-West B data sets shows significantly larger mixing ratios of SO2 and H2O2 during PEM-West A. Emissions from eruption of Mount Pinatubo are a likely cause for the former, while suppressed photochemical activity in winter was probably responsible for the latter. This comparison also highlighted the twofold enhancement in C2H2, C2H6, and C3H8 in the continental north outflow during PEM-West B. Although this could be due to reduced OH oxidation rates of these species in wintertime, we argue that increased source emissions are primarily responsible.


web science | 2003

International Photolysis Frequency Measurement and Model Intercomparison (IPMMI): Spectral actinic solar flux measurements and modeling

A. F. Bais; Sasha Madronich; J. H. Crawford; Samuel R. Hall; Bernhard Mayer; M. van Weele; Jacqueline Lenoble; Jack G. Calvert; C. A. Cantrell; Richard E. Shetter; Andreas Hofzumahaus; Peter Koepke; Paul S. Monks; G. J. Frost; Richard McKenzie; N. Krotkov; Arve Kylling; William H. Swartz; Steven A. Lloyd; G. G. Pfister; T. J. Martin; E.‐P. Roeth; Erik Griffioen; Ansgar Ruggaber; Maarten C. Krol; Alexander Kraus; Gavin D. Edwards; M. Mueller; Barry Lefer; P. V. Johnston

[1] The International Photolysis Frequency Measurement and Model Intercomparison (IPMMI) took place in Boulder, Colorado, from 15 to 19 June 1998, aiming to investigate the level of accuracy of photolysis frequency and spectral downwelling actinic flux measurements and to explore the ability of radiative transfer models to reproduce the measurements. During this period, 2 days were selected to compare model calculations with measurements, one cloud-free and one cloudy. A series of ancillary measurements were also performed and provided parameters required as input to the models. Both measurements and modeling were blind, in the sense that no exchanges of data or calculations were allowed among the participants, and the results were objectively analyzed and compared by two independent referees. The objective of this paper is, first, to present the results of comparisons made between measured and modeled downwelling actinic flux and irradiance spectra and, second, to investigate the reasons for which some of the models or measurements deviate from the others. For clear skies the relative agreement between the 16 models depends strongly on solar zenith angle (SZA) and wavelength as well as on the input parameters used, like the extraterrestrial (ET) solar flux and the absorption cross sections. The majority of the models (11) agreed to within about +/-6% for solar zenith angles smaller than similar to60degrees. The agreement among the measured spectra depends on the optical characteristics of the instruments (e.g., slit function, stray light rejection, and sensitivity). After transforming the measurements to a common spectral resolution, two of the three participating spectroradiometers agree to within similar to10% for wavelengths longer than 310 nm and at all solar zenith angles, while their differences increase when moving to shorter wavelengths. Most models agree well with the measurements (both downwelling actinic flux and global irradiance), especially at local noon, where the agreement is within a few percent. A few models exhibit significant deviations with respect either to wavelength or to solar zenith angle. Models that use the Atmospheric Laboratory for Applications and Science 3 (ATLAS-3) solar flux agree better with the measured spectra, suggesting that ATLAS-3 is probably more appropriate for radiative transfer modeling in the ultraviolet.


Journal of Geophysical Research | 1996

Chemical characteristics of continental outflow over the tropical South Atlantic Ocean from Brazil and Africa

Robert W. Talbot; J. D. Bradshaw; S. T. Sandholm; S. Smyth; D. R. Blake; N. R. Blake; G. W. Sachse; J. E. Collins; Brian G. Heikes; Bruce E. Anderson; G. L. Gregory; H. B. Singh; Barry Lefer; A. S. Bachmeier

The chemical characteristics of air parcels over the tropical South Atlantic during September – October 1992 are summarized by analysis of aged marine and continental outflow classifications. Positive correlations between CO and CH3Cl and minimal enhancements of C2Cl4 and various chlorofluorocarbon (CFC) species in air parcels recently advected over the South Atlantic basin strongly suggest an impact on tropospheric chemistry from biomass burning on adjacent continental areas of Brazil and Africa. Comparison of the composition of aged Pacific air with aged marine air over the South Atlantic basin from 0.3 to 12.5 km altitude indicates potential accumulation of long-lived species during the local dry season. This may amount to enhancements of up to two-fold for C2H6, 30% for CO, and 10% for CH3Cl. Nitric oxide and NOx were significantly enhanced (up to ∼1 part per billion by volume (ppbv)) above 10 km altitude and poorly correlated with CO and CH3Cl. In addition, median mixing ratios of NO and NOx were essentially identical in aged marine and continental outflow air masses. It appears that in addition to biomass burning, lightning or recycled reactive nitrogen may be an important source of NOx to the upper troposphere. Methane exhibited a monotonic increase with altitude from ∼1690 to 1720 ppbv in both aged marine and continental outflow air masses. The largest mixing ratios in the upper troposphere were often anticorrelated with CO, CH3Cl, and CO2, suggesting CH4 contributions from natural sources. We also argue, based on CH4/CO ratios and relationships with various hydrocarbon and CFC species, that inputs from biomass burning and the northern hemisphere are unlikely to be the dominant sources of CO, CH4, and C2H6 in aged marine air. Emissions from urban areas would seem to be necessary to account for the distribution of at least CH4 and C2H6. Over the African and South American continents an efficient mechanism of convective vertical transport coupled with large-scale circulations conveys biomass burning, urban, and natural emissions to the upper troposphere over the South Atlantic basin. Slow subsidence over the eastern South Atlantic basin may play an important role in establishing and maintaining the rather uniform vertical distribution of long-lived species over this region. The common occurrence of values greater than 1 for the ratio CH3OOH/H2O2 in the upper troposphere suggests that precipitation scavenging effectively removed highly water soluble gases (H2O2, HNO3, HCOOH, and CH3COOH) and aerosols during vertical convective transport over the continents. However, horizontal injection of biomass burning products over the South Atlantic, particularly water soluble species and aerosol particles, was frequent below 6 km altitude.


Environmental Science & Technology | 2012

Vertically Resolved Measurements of Nighttime Radical Reservoirs in Los Angeles and Their Contribution to the Urban Radical Budget

Cora J. Young; Rebecca A. Washenfelder; James M. Roberts; Levi H Mielke; Hans D. Osthoff; Catalina Tsai; Olga Pikelnaya; J. Stutz; P. R. Veres; Anthony Cochran; Trevor C. VandenBoer; James Flynn; N. Grossberg; Christine Haman; Barry Lefer; Harald Stark; Martin Graus; Joost A. de Gouw; J. B. Gilman; William C. Kuster; Steven S. Brown

Photolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010. Average profiles of ClNO(2) exhibited no significant dependence on height within the boundary layer and residual layer, although individual vertical profiles did show variability. By contrast, nitrous acid was strongly enhanced near the ground surface with much smaller concentrations aloft. These observations are consistent with a ClNO(2) source from aerosol uptake of N(2)O(5) throughout the boundary layer and a HONO source from dry deposition of NO(2) to the ground surface and subsequent chemical conversion. At ground level, daytime radical formation calculated from nighttime-accumulated HONO and ClNO(2) was approximately equal. Incorporating the different vertical distributions by integrating through the boundary and residual layers demonstrated that nighttime-accumulated ClNO(2) produced nine times as many radicals as nighttime-accumulated HONO. A comprehensive radical budget at ground level demonstrated that nighttime radical reservoirs accounted for 8% of total radicals formed and that they were the dominant radical source between sunrise and 09:00 Pacific daylight time (PDT). These data show that vertical gradients of radical precursors should be taken into account in radical budgets, particularly with respect to HONO.


Geophysical Research Letters | 2001

Evidence for photochemical production of ozone at the South Pole surface

J. H. Crawford; D. D. Davis; G. Chen; M. Buhr; Samuel J. Oltmans; Rolf Weller; L. R. Mauldin; F. L. Eisele; Richard E. Shetter; Barry Lefer; Richard Arimoto; A. Hogan

Observations of OH, NO, and actinic flux at the South Pole surface during December 1998 suggest a surprisingly active photochemical environment which should result in photochemical production of ozone. Long-term South Pole in situ ozone data as well as sonde data also appear to support this conclusion. Other possible factors contributing to ozone variability such as stratospheric influence and the origin of air transported to the South Pole are also explored. Based on box model calculations it is estimated that photochemistry could add 2.2 to 3.6 ppbv/day of ozone to surface air parcels residing on the Antarctic polar plateau. Although the oxidizing potential of the polar plateau appears to be exceptionally high for a remote site, it is unlikely that it has a significant impact on surrounding regions such as the Southern Ocean and the Antarctic free troposphere. These new findings do suggest, however, that the enhanced oxidizing power of the polar plateau may need to be considered in interpreting the chemical history of climate proxy species in ice cores.


Geophysical Research Letters | 2001

Measurements of OH, H2SO4, and MSA at the South Pole during ISCAT

R. L. Mauldin; F. L. Eisele; David J. Tanner; E. Kosciuch; Richard E. Shetter; Barry Lefer; Spencer R. Hall; J. B. Nowak; M. Buhr; G. Chen; P. Wang; D. D. Davis

The first measurements of OH, H2SO4, and MSA performed at the South Pole as part of the Investigation of Sulfur Chemistry in the Antarctic Troposphere (ISCAT) study are presented. OH concentrations were found to be quite elevated for such a dry environment, with average values of 2x106 molecule cm−3. Model simulations suggest that much of the observed OH is a result of unexpectedly high NO concentrations. Concentrations of H2SO4 and MSA were generally low with average values of 2.5x105 and 1x105 molecule cm−3, respectively. Major variations in the concentration levels of the above species were found to have a high correlation with changes in the polar mixing layer as estimated from the measured temperature difference from 22 to 2m above the snow surface. Chemical details are discussed.


Journal of Geophysical Research | 1994

Enhancement of acidic gases in biomass burning impacted air masses over Canada

Barry Lefer; Robert W. Talbot; R. H. Harriss; J. D. Bradshaw; S. T. Sandholm; J. O. Olson; G. W. Sachse; J. E. Collins; M. A. Shipham; D. R. Blake; Konstantin Klemm; Otto Klemm; K. Gorzelska; J. Barrick

Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, ΔX/ΔCO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.


Journal of Geophysical Research | 2003

Seasonal distributions of fine aerosol sulfate in the North American Arctic basin during TOPSE

Eric Scheuer; Robert W. Talbot; Jack E. Dibb; Garry Seid; Linsey J. DeBell; Barry Lefer

We used the mist chamber/ion chromatography technique to quantify fine aerosol SO = 4 (<2.7 μm) in the Arctic during the Tropospheric Ozone Production about the Spring Equinox Experiment (TOPSE) with about 2.5 min time resolution. Our effective sample area ranged from 50° to 86°N and 53° to 100°W. The seasonal evolution of fine aerosol sulfate in the Arctic troposphere during TOPSE was consistent with the phenomenon of Arctic haze. Arctic haze has been attributed to pollution from sources in the Arctic and pollution transported meridionally along stable isentropes into the Arctic in geographically broad but vertically narrow bands. These layers became more prevalent at higher altitudes as the season progressed toward summer, and the relevant isentropes are not held so close to the surface. Mean fine particle SO 4 = mixing ratios during TOPSE in February below 1000 m were elevated (112 pptv) and highly variable (between 28 and 290 pptv) but were significantly lower at higher altitudes (about 40 pptv). As the season progressed, elevated mixing ratios and higher variability were observed at higher altitudes, up to 7 km. In May, mixing ratios at the lowest altitudes declined but still remained higher than in February at all altitudes. The high variability in our measurements likely reflects the vertical heterogeneity of the wintertime Arctic atmosphere as the airborne sampling platform passed in and out of these layers. It is presumed that mixing ratios and variability will continue to decline at all altitudes into the summer as wet deposition processes become important in removing aerosol SO = 4 from the troposphere.


Journal of Geophysical Research | 1997

Large‐scale distributions of tropospheric nitric, formic, and acetic acids over the western Pacific basin during wintertime

Robert W. Talbot; Jack E. Dibb; Barry Lefer; Eric Scheuer; J. D. Bradshaw; S. T. Sandholm; S. Smyth; D. R. Blake; N. J. Blake; G. W. Sachse; J. E. Collins; G. L. Gregory

We report here measurements of the acidic gases nitric (HNO3), formic (HCOOH), and acetic (CH3COOH) over the western Pacific basin during the February-March 1994 Pacific Exploratory Mission-West (PEM-West B). These data were obtained aboard the NASA DC-8 research aircraft as it flew missions in the altitude range of 0.3–12.5 km over equatorial regions near Guam and then further westward encompassing the entire Pacific Rim arc. Aged marine air over the equatorial Pacific generally exhibited mixing ratios of acidic gases <100 parts per trillion by volume (pptv). Near the Asian continent, discrete plumes encountered below 6 km altitude contained up to 8 parts per billion by volume (ppbv) HNO3 and 10 ppbv HCOOH and CH3COOH. Overall there was a general correlation between mixing ratios of acidic gases with those of CO, C2H2, and C2Cl4, indicative of emissions from combustion and industrial sources. The latitudinal distributions of HNO3 and CO showed that the largest mixing ratios were centered around 15°N, while HCOOH, CH3COOH, and C2Cl4 peaked at 25°N. The mixing ratios of HCOOH and CH3COOH were highly correlated (r2 = 0.87) below 6 km altitude, with a slope (0.89) characteristic of the nongrowing season at midlatitudes in the northern hemisphere. Above 6 km altitude, HCOOH and CH3COOH were marginally correlated (r2 = 0.50), and plumes well defined by CO, C2H2, and C2Cl4 were depleted in acidic gases, most likely due to scavenging during vertical transport of air masses through convective cloud systems over the Asian continent. In stratospheric air masses, HNO3 mixing ratios were several parts per billion by volume (ppbv), yielding relationships with O3 and N2O consistent with those previously reported for NOy.

Collaboration


Dive into the Barry Lefer's collaboration.

Top Co-Authors

Avatar

Richard E. Shetter

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. R. Blake

University of California

View shared research outputs
Top Co-Authors

Avatar

Jack E. Dibb

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Stutz

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. L. Eisele

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

G. Chen

Langley Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge