Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barry P. Rosen is active.

Publication


Featured researches published by Barry P. Rosen.


FEBS Letters | 2002

Biochemistry of arsenic detoxification

Barry P. Rosen

All living organisms have systems for arsenic detoxification. The common themes are (a) uptake of As(V) in the form of arsenate by phosphate transporters, (b) uptake of As(III) in the form of arsenite by aquaglyceroporins, (c) reduction of As(V) to As(III) by arsenate reductases, and (d) extrusion or sequestration of As(III). While the overall schemes for arsenic resistance are similar in prokaryotes and eukaryotes, some of the specific proteins are the products of separate evolutionary pathways.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9

Zijuan Liu; Jian Shen; Jennifer M. Carbrey; Rita Mukhopadhyay; Peter Agre; Barry P. Rosen

Much is known about the transport of arsenite and antimonite into microbes, but the identities of mammalian transport proteins are unknown. The Saccharomyces cerevisiae FPS1 gene encodes a membrane protein homologous to the bacterial aquaglyceroporin GlpF and to mammalian aquaglyceroporins AQP7 and AQP9. Fps1p mediates glycerol uptake and glycerol efflux in response to hypoosmotic shock. Fps1p has been shown to facilitate uptake of the metalloids arsenite and antimonite, and the Escherichia coli homolog, GlpF, facilitates the uptake and sensitivity to metalloid salts. In this study, the ability of mammalian aquaglyceroporins AQP7 and AQP9 to substitute for the yeast Fps1p was examined. The fps1Δ strain of S. cerevisiae exhibits increased tolerance to arsenite and antimonite compared to a wild-type strain. Introduction of a plasmid containing AQP9 reverses the metalloid tolerance of the deletion strain. AQP7 was not expressed in yeast. The fps1Δ cells exhibit reduced transport of 73As(III) or 125Sb(III), but uptake is enhanced by expression of AQP9. Xenopus laevis oocytes microinjected with either AQP7 or AQP9 cRNA exhibited increased transport of 73As(III). These results suggest that AQP9 and AQP7 may be a major routes of arsenite uptake into mammalian cells, an observation potentially of large importance for understanding the action of arsenite as a human toxin and carcinogen, as well as its efficacy as a chemotherapeutic agent for acute promyelocytic leukemia.


Nature Biotechnology | 2002

Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression

Om Parkash Dhankher; Yujing Li; Barry P. Rosen; Jin Shi; David E. Salt; Julie F. Senecoff; Nupur A. Sashti; Richard B. Meagher

We have developed a genetics-based phytoremediation strategy for arsenic in which the oxyanion arsenate is transported aboveground, reduced to arsenite, and sequestered in thiol–peptide complexes. The Escherichia coli arsC gene encodes arsenate reductase (ArsC), which catalyzes the glutathione (GSH)-coupled electrochemical reduction of arsenate to the more toxic arsenite. Arabidopsis thaliana plants transformed with the arsC gene expressed from a light-induced soybean rubisco promoter (SRS1p) strongly express ArsC protein in leaves, but not roots, and were consequently hypersensitive to arsenate. Arabidopsis plants expressing the E. coli gene encoding γ-glutamylcysteine synthetase (γ-ECS) from a strong constitutive actin promoter (ACT2p) were moderately tolerant to arsenic compared with wild type. However, plants expressing SRS1p/ArsC and ACT2p/γ-ECS together showed substantially greater arsenic tolerance than γ-ECS or wild-type plants. When grown on arsenic, these plants accumulated 4- to 17-fold greater fresh shoot weight and accumulated 2- to 3-fold more arsenic per gram of tissue than wild type or plants expressing γ-ECS or ArsC alone. This arsenic remediation strategy should be applicable to a wide variety of plant species.


Trends in Microbiology | 1999

Families of arsenic transporters.

Barry P. Rosen

Bacterial arsenic resistance (ars) operons encode an arsenite-efflux system that can be a secondary carrier protein (ArsB) or an anion-translocating ATPase (ArsAB). Yeasts extrude arsenite using Acr3p, a plasma membrane carrier protein, or sequester it in vacuoles as the glutathione conjugate using Ycf1p, an ABC transporter.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2002

Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes☆

Barry P. Rosen

Transition metals, heavy metals and metalloids are usually toxic in excess, but a number of transition metals are essential trace elements. In all cells there are mechanisms for metal ion homeostasis that frequently involve a balance between uptake and efflux systems. This review will briefly describe ATP-coupled resistance pumps. ZntA and CadA are bacterial P-type ATPases that confers resistance to Zn(II), Cd(II) and Pb(II). Homologous copper pumps include the Menkes and Wilson disease proteins and CopA, an Escherichia coli pump that confers resistance to Cu(I). For resistance to arsenicals and antimonials there are several different families of transporters. In E. coli the ArsAB ATPase is a novel system that confers resistance to As(III) and Sb(III). Eukaryotic arsenic resistance transporters include Acr3p and Ycf1p of Saccharomyces cerevisiae. These systems provide resistance to arsenite [As(III)]. Arsenate [As(V)] detoxification involves reduction of As(V) to As(III), a process catalyzed by arsenate reductase enzymes. There are three families of arsenate reductases, two found in bacterial systems and a third identified in S. cerevisiae.


Journal of Biological Chemistry | 2000

The ATP Hydrolytic Activity of Purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli

Rakesh Sharma; Christopher Rensing; Barry P. Rosen; Bharati Mitra

ZntA, a soft metal-translocating P1-type ATPase from Escherichia coli, confers resistance to Pb(II), Cd(II), and Zn(II). ZntA was expressed as a histidyl-tagged protein, solubilized from membranes with Triton X-100, and purified to homogeneity. The soft metal-dependent ATP hydrolysis activity of purified ZntA was characterized. The activity was specific for Pb(II), Cd(II), Zn(II), and Hg(II), with the highest activity obtained when the metals were present as thiolate complexes of cysteine or glutathione. The maximal ATPase activity of ZntA was ∼3 μmol/(mg·min) obtained with the Pb(II)-thiolate complex. In the absence of thiolates, Cd(II) inhibits ZntA above pH 6, whereas the Cd(II)-thiolate complexes stimulate activity, suggesting that a metal-thiolate complex is the true substrate in vivo. These results are consistent with the physiological role of ZntA as mediator of resistance to toxic concentrations of the divalent soft metals, Pb(II), Cd(II), and Zn(II), by ATP-dependent efflux. Our results confirm that ZntA is the first Pb(II)-dependent ATPase discovered to date.


The EMBO Journal | 1997

Co-amplification of the gamma-glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae.

Katherine Grondin; Anass Haimeur; Rita Mukhopadhyay; Barry P. Rosen; Marc Ouellette

Resistance to the oxyanion arsenite in the parasite Leishmania is multifactorial. We have described previously the frequent amplification of the ABC transporter gene pgpA, the presence of a non‐PgpA thiol–metal efflux pump and increased levels of glutathione and trypanothione in resistant cells. Other loci are also amplified, although their role in resistance is unknown. By gene transfection, we have characterized one of these novel genes. It corresponds to gsh1, which encodes γ‐glutamylcysteine synthetase, an enzyme involved in the rate‐limiting step of glutathione biosynthesis. Transfection of gsh1 in wild‐type cells increased the levels of glutathione and trypanothione to levels found in resistant mutants. These transfectants were not resistant to metals. However, when gsh1 was transfected in partial revertants, it conferred resistance. As pgpA is frequently co‐amplified with gsh1, we co‐transfected the two genes into both wild‐type and partial revertants. Arsenite resistance levels in wild‐type cells could be accounted for by the contribution of PgpA alone. In the partial revertant, the gsh1 and pgpA gene product acted synergistically. These results support our previous suggestion that PgpA recognizes metals conjugated to thiols. Furthermore, amplification of gsh1 overcomes the rate‐limiting step in the synthesis of trypanothione, contributing to resistance. In addition, the results suggest that at least one more factor acts synergistically with the gsh1 gene product.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga

Jie Qin; Corinne R. Lehr; Chungang Yuan; X. Chris Le; Timothy R. McDermott; Barry P. Rosen

Arsenic is the most common toxic substance in the environment, ranking first on the Superfund list of hazardous substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. Geothermal environments are known for their elevated arsenic content and thus provide an excellent setting in which to study microbial redox transformations of arsenic. To date, most studies of microbial communities in geothermal environments have focused on Bacteria and Archaea, with little attention to eukaryotic microorganisms. Here, we show the potential of an extremophilic eukaryotic alga of the order Cyanidiales to influence arsenic cycling at elevated temperatures. Cyanidioschyzon sp. isolate 5508 oxidized arsenite [As(III)] to arsenate [As(V)], reduced As(V) to As(III), and methylated As(III) to form trimethylarsine oxide (TMAO) and dimethylarsenate [DMAs(V)]. Two arsenic methyltransferase genes, CmarsM7 and CmarsM8, were cloned from this organism and demonstrated to confer resistance to As(III) in an arsenite hypersensitive strain of Escherichia coli. The 2 recombinant CmArsMs were purified and shown to transform As(III) into monomethylarsenite, DMAs(V), TMAO, and trimethylarsine gas, with a Topt of 60–70 °C. These studies illustrate the importance of eukaryotic microorganisms to the biogeochemical cycling of arsenic in geothermal systems, offer a molecular explanation for how these algae tolerate arsenic in their environment, and provide the characterization of algal methyltransferases.


The EMBO Journal | 2000

Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump

Tongqing Zhou; Sergei Radaev; Barry P. Rosen; Domenico L. Gatti

Active extrusion is a common mechanism underlying detoxification of heavy metals, drugs and antibiotics in bacteria, protozoa and mammals. In Escherichia coli, the ArsAB pump provides resistance to arsenite and antimonite. This pump consists of a soluble ATPase (ArsA) and a membrane channel (ArsB). ArsA contains two nucleotide‐binding sites (NBSs) and a binding site for arsenic or antimony. Binding of metalloids stimulates ATPase activity. The crystal structure of ArsA reveals that both NBSs and the metal‐binding site are located at the interface between two homologous domains. A short stretch of residues connecting the metal‐binding site to the NBSs provides a signal transduction pathway that conveys information on metal occupancy to the ATP hydrolysis sites. Based on these structural features, we propose that the metal‐binding site is involved directly in the process of vectorial translocation of arsenite or antimonite across the membrane. The relative positions of the NBS and the inferred mechanism of allosteric activation of ArsA provide a useful model for the interaction of the catalytic domains in other transport ATPases.


Journal of Bacteriology | 2001

ZitB (YbgR), a Member of the Cation Diffusion Facilitator Family, Is an Additional Zinc Transporter in Escherichia coli

Gregor Grass; Bin Fan; Barry P. Rosen; Sylvia Franke; Dietrich H. Nies; Christopher Rensing

The Escherichia coli zitB gene encodes a Zn(II) transporter belonging to the cation diffusion facilitator family. ZitB is specifically induced by zinc. ZitB expression on a plasmid rendered zntA-disrupted E. coli cells more resistant to zinc, and the cells exhibited reduced accumulation of (65)Zn, suggesting ZitB-mediated efflux of zinc.

Collaboration


Dive into the Barry P. Rosen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Chen

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Saibal Dey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong-Guan Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zijuan Liu

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Abdul Ajees

FIU Herbert Wertheim College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge