Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Rensing is active.

Publication


Featured researches published by Christopher Rensing.


Journal of Bacteriology | 2003

Molecular Analysis of the Copper-Transporting Efflux System CusCFBA of Escherichia coli

Sylvia Franke; Gregor Grass; Christopher Rensing; Dietrich H. Nies

The cus determinant of Escherichia coli encodes the CusCFBA proteins that mediate resistance to copper and silver by cation efflux. CusA and CusB were essential for copper resistance, and CusC and CusF were required for full resistance. Replacements of methionine residues 573, 623, and 672 with isoleucine in CusA resulted in loss of copper resistance, demonstrating their functional importance. Substitutions for several other methionine residues of this protein did not have any effect. The small 10-kDa protein CusF (previously YlcC) was shown to be a periplasmic protein. CusF bound one copper per polypeptide. The pink CusF copper protein complex exhibited an absorption maximum at around 510 nm. Methionine residues of CusF were involved in copper binding as shown by site-directed mutagenesis. CusF interacted with CusB and CusC polypeptides in a yeast two-hybrid assay. In contrast to other well-studied CBA-type heavy metal efflux systems, Cus was shown to be a tetrapartite resistance system that involves the novel periplasmic copper-binding protein CusF. These data provide additional evidence for the hypothesis that Cu(I) is directly transported from the periplasm across the outer membrane by the Cus complex.


Journal of Bacteriology | 2001

Genes involved in copper homeostasis in Escherichia coli.

Gregor Grass; Christopher Rensing

Recently, genes for two copper-responsive regulatory systems were identified in the Escherichia coli chromosome. In this report, data are presented that support a hypothesis that the putative multicopper oxidase CueO and the transenvelope transporter CusCFBA are involved in copper tolerance in E. coli.


Journal of Biological Chemistry | 2000

The ATP Hydrolytic Activity of Purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli

Rakesh Sharma; Christopher Rensing; Barry P. Rosen; Bharati Mitra

ZntA, a soft metal-translocating P1-type ATPase from Escherichia coli, confers resistance to Pb(II), Cd(II), and Zn(II). ZntA was expressed as a histidyl-tagged protein, solubilized from membranes with Triton X-100, and purified to homogeneity. The soft metal-dependent ATP hydrolysis activity of purified ZntA was characterized. The activity was specific for Pb(II), Cd(II), Zn(II), and Hg(II), with the highest activity obtained when the metals were present as thiolate complexes of cysteine or glutathione. The maximal ATPase activity of ZntA was ∼3 μmol/(mg·min) obtained with the Pb(II)-thiolate complex. In the absence of thiolates, Cd(II) inhibits ZntA above pH 6, whereas the Cd(II)-thiolate complexes stimulate activity, suggesting that a metal-thiolate complex is the true substrate in vivo. These results are consistent with the physiological role of ZntA as mediator of resistance to toxic concentrations of the divalent soft metals, Pb(II), Cd(II), and Zn(II), by ATP-dependent efflux. Our results confirm that ZntA is the first Pb(II)-dependent ATPase discovered to date.


Journal of Bacteriology | 2005

The Metal Permease ZupT from Escherichia coli Is a Transporter with a Broad Substrate Spectrum

Gregor Grass; Sylvia Franke; Nadine Taudte; Dietrich H. Nies; Lisa M. Kucharski; Michael E. Maguire; Christopher Rensing

The Escherichia coli zupT (formerly ygiE) gene encodes a cytoplasmic membrane protein (ZupT) related to members of the eukaryotic ZIP family of divalent metal ion transporters. Previously, ZupT was shown to be responsible for uptake of zinc. In this study, we show that ZupT is a divalent metal cation transporter of broad substrate specificity. An E. coli strain with a disruption in all known iron uptake systems could grow in the presence of chelators only if zupT was expressed. Heterologous expression of Arabidopsis thaliana ZIP1 could also alleviate iron deficiency in this E. coli strain, as could expression of indigenous mntH or feoABC. Transport studies with intact cells showed that ZupT facilitates uptake of 55Fe2+ similarly to uptake of MntH or Feo. Other divalent cations were also taken up by ZupT, as shown using 57Co2+. Expression of zupT rendered E. coli cells hypersensitive to Co2+ and sensitive to Mn2+. ZupT did not appear to be metal regulated: expression of a Phi(zupT-lacZ) operon fusion indicated that zupT is expressed constitutively at a low level.


Journal of Bacteriology | 2001

ZitB (YbgR), a Member of the Cation Diffusion Facilitator Family, Is an Additional Zinc Transporter in Escherichia coli

Gregor Grass; Bin Fan; Barry P. Rosen; Sylvia Franke; Dietrich H. Nies; Christopher Rensing

The Escherichia coli zitB gene encodes a Zn(II) transporter belonging to the cation diffusion facilitator family. ZitB is specifically induced by zinc. ZitB expression on a plasmid rendered zntA-disrupted E. coli cells more resistant to zinc, and the cells exhibited reduced accumulation of (65)Zn, suggesting ZitB-mediated efflux of zinc.


Journal of Bacteriology | 2002

ZupT Is a Zn(II) Uptake System in Escherichia coli

Gregor Grass; Marco D. Wong; Barry P. Rosen; Ronald L. Smith; Christopher Rensing

Escherichia coli zupT (ygiE), encoding a ZIP family member, mediated zinc uptake. Growth of cells disrupted in both zupT and the znuABC operon was inhibited by EDTA at a much lower concentration than a single mutant or the wild type. Cells expressing ZupT from a plasmid exhibited increased uptake of (65)Zn(2+).


Journal of Bacteriology | 2004

Arsenic Resistance in Halobacterium sp. Strain NRC-1 Examined by Using an Improved Gene Knockout System

Gejiao Wang; Sean P. Kennedy; Sabeena Fasiludeen; Christopher Rensing; Shiladitya DasSarma

The genome sequence of Halobacterium sp. strain NRC-1 encodes genes homologous to those responsible for conferring resistance to arsenic. These genes occur on both the large extrachromosomal replicon pNRC100 (arsADRC and arsR2M) and on the chromosome (arsB). We studied the role of these ars genes in arsenic resistance genetically by construction of gene knockouts. Deletion of the arsADRC gene cluster in a Halobacterium NRC-1 Deltaura3 strain resulted in increased sensitivity to arsenite and antimonite but not arsenate. In contrast, knockout of the chromosomal arsB gene did not show significantly increased sensitivity to arsenite or arsenate. We also found that knockout of the arsM gene produced sensitivity to arsenite, suggesting a second novel mechanism of arsenic resistance involving a putative arsenite(III)-methyltransferase. These results indicate that Halobacterium sp. strain NRC-1 contains an arsenite and antimonite extrusion system with significant differences from bacterial counterparts. Deletion analysis was facilitated by an improved method for gene knockouts/replacements in Halobacterium that relies on both selection and counterselection of ura3 using a uracil dropout medium and 5-fluoroorotic acid. The arsenite and antimonite resistance elements were shown to be regulated, with resistance to arsenic in the wild type inducible by exposure to a sublethal concentration of the metal. Northern hybridization and reverse transcription-PCR analyses showed that arsA, arsD, arsR, arsM, arsC, and arsB, but not arsR2, are inducible by arsenite and antimonite. We discuss novel aspects of arsenic resistance in this halophilic archaeon and technical improvements in our capability for gene knockouts in the genome.


Journal of Bacteriology | 2004

Linkage between Catecholate Siderophores and the Multicopper Oxidase CueO in Escherichia coli

Gregor Grass; Keshari M. Thakali; Phillip E. Klebba; Daniel Thieme; Axel Müller; Günter F. Wildner; Christopher Rensing

The multicopper oxidase CueO had previously been demonstrated to exhibit phenoloxidase activity and was implicated in intrinsic copper resistance in Escherichia coli. Catecholates can potentially reduce Cu(II) to the prooxidant Cu(I). In this report we provide evidence that CueO protects E. coli cells by oxidizing enterobactin, the catechol iron siderophore of E. coli, in the presence of copper. In vitro, a mixture of enterobactin and copper was toxic for E. coli cells, but the addition of purified CueO led to their survival. Deletion of fur resulted in copper hypersensitivity that was alleviated by additional deletion of entC, preventing synthesis of enterobactin. In addition, copper added together with 2,3-dihydroxybenzoic acid or enterobactin was able to induce a Phi(cueO-lacZ) operon fusion more efficiently than copper alone. The reaction product of the 2,3-dihydroxybenzoic acid oxidation by CueO that can complex Cu(II) ions was determined by gas chromatography-mass spectroscopy and identified as 2-carboxymuconate.


Journal of Bacteriology | 2004

Characteristics of Zinc Transport by Two Bacterial Cation Diffusion Facilitators from Ralstonia metallidurans CH34 and Escherichia coli

Andreas Anton; Annett Weltrowski; Christopher J. Haney; Sylvia Franke; Gregor Grass; Christopher Rensing; Dietrich H. Nies

CzcD from Ralstonia metallidurans and ZitB from Escherichia coli are prototypes of bacterial members of the cation diffusion facilitator (CDF) protein family. Expression of the czcD gene in an E. coli mutant strain devoid of zitB and the gene for the zinc-transporting P-type ATPase zntA rendered this strain more zinc resistant and caused decreased accumulation of zinc. CzcD, purified as an amino-terminal streptavidin-tagged protein, bound Zn2+, Co2+, Cu2+, and Ni2+ but not Mg2+, Mn2+, or Cd2+, as shown by metal affinity chromatography. Histidine residues were involved in the binding of 2 to 3 mol of Zn2+ per mol of CzcD. ZitB transported 65Zn2+ in the presence of NADH into everted membrane vesicles with an apparent Km of 1.4 microM and a Vmax of 0.57 nmol of Zn2+ min(-1) mg of protein(-1). Conserved amino acyl residues that might be involved in binding and transport of zinc were mutated in CzcD and/or ZitB, and the influence on Zn2+ resistance was studied. Charged or polar amino acyl residues that were located within or adjacent to membrane-spanning regions of the proteins were essential for the full function of the proteins. Probably, these amino acyl residues constituted a pathway required for export of the heavy metal cations or for import of counter-flowing protons.


Journal of Bacteriology | 2003

Interplay of the Czc System and Two P-Type ATPases in Conferring Metal Resistance to Ralstonia metallidurans

Antje Legatzki; Gregor Grass; Andreas Anton; Christopher Rensing; Dietrich H. Nies

Cadmium and zinc are removed from cells of Ralstonia metallidurans by the CzcCBA efflux pump and by two soft-metal-transporting P-type ATPases, CadA and ZntA. The czcCBA genes are located on plasmid pMOL30, and the cadA and zntA genes are on the bacterial chromosome. Expression of zntA from R. metallidurans in Escherichia coli predominantly mediated resistance to zinc, and expression of cadA predominantly mediated resistance to cadmium. Both transporters decreased the cellular content of zinc or cadmium in this host. In the plasmid-free R. metallidurans strain AE104, single gene deletions of cadA or zntA had only a moderate effect on cadmium and zinc resistance, but zinc resistance decreased 6-fold and cadmium resistance decreased 350-fold in double deletion strains. Neither single nor double gene deletions affected zinc resistance in the presence of czcCBA. In contrast, cadmium resistance of the cadA zntA double mutant could be elevated only partially by the presence of CzcCBA. lacZ reporter gene fusions indicated that expression of cadA was induced by cadmium but not by zinc in R. metallidurans strain AE104. In the absence of the zntA gene, expression of cadA occurred at lower cadmium concentrations and zinc now served as an inducer. In contrast, expression of zntA was induced by both zinc and cadmium, and the induction pattern did not change in the presence or absence of CadA. However, expression of both genes, zntA and cadA, was diminished in the presence of CzcCBA. This indicated that CzcCBA efficiently decreased cytoplasmic cadmium and zinc concentrations. It is discussed whether these data favor a model in which the cations are removed either from the cytoplasm or the periplasm by CzcCBA.

Collaboration


Dive into the Christopher Rensing's collaboration.

Top Co-Authors

Avatar

Yong-Guan Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Barry P. Rosen

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siyu Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge