Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barry W. Connors is active.

Publication


Featured researches published by Barry W. Connors.


Nature | 1999

Two networks of electrically coupled inhibitory neurons in neocortex

Jay R. Gibson; Michael Beierlein; Barry W. Connors

Inhibitory interneurons are critical to sensory transformations, plasticity and synchronous activity in the neocortex. There are many types of inhibitory neurons, but their synaptic organization is poorly understood. Here we describe two functionally distinct inhibitory networks comprising either fast-spiking (FS) or low-threshold spiking (LTS) neurons. Paired-cell recordings showed that inhibitory neurons of the same type were strongly interconnected by electrical synapses, but electrical synapses between different inhibitory cell types were rare. The electrical synapses were strong enough to synchronize spikes in coupled interneurons. Inhibitory chemical synapses were also common between FS cells, and between FS and LTS cells, but LTS cells rarely inhibited one another. Thalamocortical synapses, which convey sensory information to the cortex, specifically and strongly excited only the FS cell network. The electrical and chemical synaptic connections of different types of inhibitory neurons are specific, and may allow each inhibitory network to function independently.


Trends in Neurosciences | 1990

Intrinsic firing patterns of diverse neocortical neurons

Barry W. Connors; Michael J. Gutnick

Neurons of the neocortex differ dramatically in the patterns of action potentials they generate in response to current steps. Regular-spiking cells adapt strongly during maintained stimuli, whereas fast-spiking cells can sustain very high firing frequencies with little or no adaptation. Intrinsically bursting cells generate clusters of spikes (bursts), either singly or repetitively. These physiological distinctions have morphological correlates. RS and IB cells can be either pyramidal neurons or spiny stellate cells, and thus constitute the excitatory cells of the cortex. FS cells are smooth or sparsely spiny non-pyramidal cells, and are likely to be GABAergic inhibitory interneurons. The different firing properties of neurons in neocortex contribute significantly to its network behavior.


Neuron | 2001

Synchronous Activity of Inhibitory Networks in Neocortex Requires Electrical Synapses Containing Connexin36

Michael R. Deans; Jay R. Gibson; Caterina Sellitto; Barry W. Connors; David L. Paul

Inhibitory interneurons often generate synchronous activity as an emergent property of their interconnections. To determine the role of electrical synapses in such activity, we constructed mice expressing histochemical reporters in place of the gap junction protein Cx36. Localization of the reporter with somatostatin and parvalbumin suggested that Cx36 was expressed largely by interneurons. Electrical synapses were common among cortical interneurons in controls but were nearly absent in knockouts. A metabotropic glutamate receptor agonist excited LTS interneurons, generating rhythmic inhibitory potentials in surrounding neurons of both wild-type and knockout animals. However, the synchrony of these rhythms was weaker and more spatially restricted in the knockout. We conclude that electrical synapses containing Cx36 are critical for the generation of widespread, synchronous inhibitory activity.


Neuron | 1997

Differential regulation of neocortical synapses by neuromodulators and activity.

Ziv Gil; Barry W. Connors; Yael Amitai

Synapses are continually regulated by chemical modulators and by their own activity. We tested the specificity of regulation in two excitatory pathways of the neocortex: thalamocortical (TC) synapses, which mediate specific inputs, and intracortical (IC) synapses, which mediate the recombination of cortical information. Frequency-sensitive depression was much stronger in TC synapses than in IC synapses. The two synapse types were differentially sensitive to presynaptic neuromodulators: only IC synapses were suppressed by activation of GABA(B) receptors, only TC synapses were enhanced by nicotinic acetylcholine receptors, and muscarinic acetylcholine receptors suppressed both synapse types. Modulators also differentially altered the frequency sensitivity of the synapses. Our results suggest a mechanism by which the relative strength and dynamics of input and associational pathways of neocortex are regulated during changes in behavioral state.


The Journal of Physiology | 1988

Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat.

Barry W. Connors; R C Malenka; Lr Silva

1. Pyramidal neurones from layers II and III of the rat primary somatosensory cortex and cat primary visual cortex were studied in vitro. Inhibitory postsynaptic potentials (IPSPs) and responses to exogenously applied gamma‐aminobutyric acid (GABA) and its analogue baclofen were characterized. The results from rats and cats were very similar. 2. Single electrical stimuli to deep cortical layers evoked a sequence of PSPs in the resting neurone: (a) an initial, brief excitation (EPSP), (b) a short‐latency, fast inhibition (the f‐IPSP) and (c) a long‐latency, more prolonged inhibition (the l‐IPSP). The f‐IPSP was accompanied by a large conductance increase (about 70‐90 nS) and reversed polarity at ‐75 mV; the l‐IPSP displayed a relatively small conductance increase (about 10‐20 nS) and reversed at greater than ‐90 mV. 3. Focal application of GABA near the soma evoked a triphasic response when measured near the threshold voltage for action potentials: (a) the GABAhf (hyperpolarizing, fast) phase was very brief and was generated by a large conductance increase with a reversal potential of ‐78 mV, (b) the GABAd (depolarizing) phase also had a high conductance but reversed at ‐51 mV, (c) the GABAhl (hyperpolarizing, long‐lasting) phase had a relatively low conductance and reversed at ‐70 mV. The GABAhf response was specifically localized to the soma, whereas the apical or basilar dendrites generated predominantly GABAd responses. 4. Baclofen, a selective GABAB receptor agonist, caused a small (about 2 mV), slow hyperpolarization of the resting potential, which reversed at ‐90 mV. Saturating baclofen doses increased membrane conductance by a maximum of about 12 nS. Baclofen depressed the amplitude and conductance of PSPs; when baclofen was focally applied near the soma. IPSPs were selectively depressed. 5. The GABAA receptor antagonists bicuculline methiodide or picrotoxin (10 microM) greatly depressed f‐IPSPs, but either enhanced or did not affect l‐IPSPs. Concomitantly, GABAhf and GABAd responses were antagonized, leaving a more prominent GABAhl response that reversed polarity at a more negative level of ‐87 mV. Baclofen responses were unaffected by bicuculline and picrotoxin. Extracellular barium abolished the baclofen response, and shifted the reversal potentials of the GABAd and GABAhl responses in the positive direction; the GABAhf response was unaffected. 6. Both focal GABA and f‐IPSPs strongly depressed the intrinsic excitability of pyramidal neurones. Each greatly increased spike threshold and abolished or vastly reduced the capacity of the cells to fire repetitively during intense stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)


Nature Neuroscience | 2000

A network of electrically coupled interneurons drives synchronized inhibition in neocortex

Michael Beierlein; Jay R. Gibson; Barry W. Connors

The neocortex has at least two different networks of electrically coupled inhibitory interneurons: fast-spiking (FS) and low-threshold-spiking (LTS) cells. Agonists of metabotropic glutamate or acetylcholine receptors induced synchronized spiking and membrane fluctuations, with irregular or rhythmic patterns, in networks of LTS cells. LTS activity was closely correlated with inhibitory postsynaptic potentials in neighboring FS interneurons and excitatory neurons. Synchronized LTS activity required electrical synapses, but not fast chemical synapses. Tetanic stimulation of local circuitry induced effects similar to those of metabotropic agonists. We conclude that an electrically coupled network of LTS interneurons can mediate synchronized inhibition when activated by modulatory neurotransmitters.


Nature Neuroscience | 2007

Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex

Scott J. Cruikshank; Timothy J. Lewis; Barry W. Connors

The thalamus provides fundamental input to the neocortex. This input activates inhibitory interneurons more strongly than excitatory neurons, triggering powerful feedforward inhibition. We studied the mechanisms of this selective neuronal activation using a mouse somatosensory thalamocortical preparation. Notably, the greater responsiveness of inhibitory interneurons was not caused by their distinctive intrinsic properties but was instead produced by synaptic mechanisms. Axons from the thalamus made stronger and more frequent excitatory connections onto inhibitory interneurons than onto excitatory cells. Furthermore, circuit dynamics allowed feedforward inhibition to suppress responses in excitatory cells more effectively than in interneurons. Thalamocortical excitatory currents rose quickly in interneurons, allowing them to fire action potentials before significant feedforward inhibition emerged. In contrast, thalamocortical excitatory currents rose slowly in excitatory cells, overlapping with feedforward inhibitory currents that suppress action potentials. These results demonstrate the importance of selective synaptic targeting and precise timing in the initial stages of neocortical processing.


Neuron | 1999

EFFICACY OF THALAMOCORTICAL AND INTRACORTICAL SYNAPTIC CONNECTIONS : QUANTA, INNERVATION, AND RELIABILITY

Ziv Gil; Barry W. Connors; Yael Amitai

Thalamocortical (TC) synapses carry information into the neocortex, but they are far outnumbered by excitatory intracortical (IC) synapses. We measured the synaptic properties that determine the efficacy of TC and IC axons converging onto spiny neurons of layer 4 in the mouse somatosensory cortex. Quantal events from TC and IC synapses were indistinguishable. However, TC axons had, on average, about 3 times more release sites than IC axons, and the mean release probability at TC synapses was about 1.5 times higher than that at IC synapses. Differences of innervation ratio and release probability make the average TC connection several times more effective than the average IC connection, and may allow small numbers of TC axons to dominate the activity of cortical layer 4 cells during sensory inflow.


The Journal of Neuroscience | 1995

Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex

Manuel A. Castro-Alamancos; John P. Donoghue; Barry W. Connors

We have studied vertical synaptic pathways in two cytoarchitectonically distinct areas of rat neocortex--the granular primary somatosensory (SI) area and the agranular primary motor (MI) area--and tested their propensity to generate long-term potentiation (LTP), long-term depression (LTD), and related forms of synaptic plasticity. Extracellular and intracellular responses were recorded in layer II/III of slices in vitro while stimulating in middle cortical layers (in or around layer IV). Under control conditions, 5 Hz theta-burst stimulation produced LTP in the granular area, but not in the agranular area. Agranular cortex did generate short-term potentiation that decayed within 20 min. Varying the inter-burst frequency from 2 Hz to 10 Hz reliably yielded LTP of 21–34% above control levels in granular cortex, but no lasting changes were induced in agranular cortex. However, the agranular cortex was capable of generating LTP if a GABAA receptor antagonist was applied locally at the recording site during the induction phase. In contrast to LTP, an identical form of homosynaptic LTD could be induced in both granular and agranular areas by applying low frequency stimulation (1 Hz for 15 min) to the middle layers. Under control conditions, both LTP and LTD were synapse- specific; theta-burst or low-frequency stimulation in the vertical pathway did not induce changes in responses to stimulation of a layer II/III horizontal pathway. Application of the NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid (AP5) blocked the induction of both LTP and LTD in granular and agranular cortex. In the presence of AP5, low-frequency conditioning stimuli yielded a short-term depression in both areas that decayed within 10–15 min. Nifedipine, which blocks L- type, voltage-sensitive calcium channels, slightly depressed the magnitudes of LTP and LTD but did not abolish them. Synaptic responses evoked during theta-burst stimulation were strikingly different in granular and agranular areas. Responses in granular cortex were progressively facilitated during each sequence of 10 theta-bursts, and from sequence-to-sequence; in contrast, responses in agranular cortex were stable during an entire theta-burst tetanus. The results suggest that vertical pathways in primary somatosensory cortex and primary motor cortex express several forms of synaptic plasticity. They were equally capable of generating LTD, but the pathways in somatosensory cortex much more reliably generated LTP, unless inhibition was reduced. LTP may be more easily produced in sensory cortex because of the pronounced synaptic facilitation that occurs there during repetitive stimulation of the induction phase.


Neuron | 2010

Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons

Scott J. Cruikshank; Hayato Urabe; A. V. Nurmikko; Barry W. Connors

Thalamocortical and corticothalamic pathways mediate bidirectional communication between the thalamus and neocortex. These pathways are entwined, making their study challenging. Here we used lentiviruses to express channelrhodopsin-2 (ChR2), a light-sensitive cation channel, in either thalamocortical or corticothalamic projection cells. Infection occurred only locally, but efferent axons and their terminals expressed ChR2 strongly, allowing selective optical activation of each pathway. Laser stimulation of ChR2-expressing thalamocortical axons/terminals evoked robust synaptic responses in cortical excitatory cells and fast-spiking (FS) inhibitory interneurons, but only weak responses in somatostatin-containing interneurons. Strong FS cell activation led to feedforward inhibition in all cortical neuron types, including FS cells. Corticothalamic stimulation excited thalamic relay cells and inhibitory neurons of the thalamic reticular nucleus (TRN). TRN activation triggered inhibition in relay cells but not in TRN neurons. Thus, a major difference between thalamocortical and corticothalamic processing was the extent to which feedforward inhibitory neurons were themselves engaged by feedforward inhibition.

Collaboration


Dive into the Barry W. Connors's collaboration.

Top Co-Authors

Avatar

Mark F. Bear

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yael Amitai

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge