Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bart Buitenhuis is active.

Publication


Featured researches published by Bart Buitenhuis.


BMC Genomics | 2011

In depth analysis of genes and pathways of the mammary gland involved in the pathogenesis of bovine Escherichia coli-mastitis

Bart Buitenhuis; Christine M. Røntved; Stefan M. Edwards; K.L. Ingvartsen; Peter Sørensen

BackgroundBovine mastitis is one of the most costly and prevalent diseases affecting dairy cows worldwide. In order to develop new strategies to prevent Escherichia coli-induced mastitis, a detailed understanding of the molecular mechanisms underlying the host immune response to an E. coli infection is necessary. To this end, we performed a global gene-expression analysis of mammary gland tissue collected from dairy cows that had been exposed to a controlled E. coli infection. Biopsy samples of healthy and infected utter tissue were collected at T = 24 h post-infection (p.i.) and at T = 192 h p.i. to represent the acute phase response (APR) and chronic stage, respectively. Differentially expressed (DE) genes for each stage were analyzed and the DE genes detected at T = 24 h were also compared to data collected from two previous E. coli mastitis studies that were carried out on post mortem tissue.ResultsNine-hundred-eighty-two transcripts were found to be differentially expressed in infected tissue at T = 24 (P < 0.05). Up-regulated transcripts (699) were largely associated with immune response functions, while the down-regulated transcripts (229) were principally involved in fat metabolism. At T = 192 h, all of the up-regulated transcripts were associated with tissue healing processes. Comparison of T = 24 h DE genes detected in the three E. coli mastitis studies revealed 248 were common and mainly involved immune response functions. KEGG pathway analysis indicated that these genes were involved in 12 pathways related to the pro-inflammatory response and APR, but also identified significant representation of two unexpected pathways: natural killer cell-mediated cytotoxicity pathway (KEGG04650) and the Rig-I-like receptor signalling pathway (KEGG04622).ConclusionsIn E. coli-induced mastitis, infected mammary gland tissue was found to significantly up-regulate expression of genes related to the immune response and down-regulate genes related to fat metabolism. Up to 25% of the DE immune response genes common to the three E. coli mastitis studies at T = 24 h were independent of E. coli strain and dose, cow lactation stage and number, tissue collection method and gene analysis method used. Hence, these DE genes likely represent important mediators of the local APR against E. coli in the mammary gland.


BMC Proceedings | 2009

Methods for interpreting lists of affected genes obtained in a DNA microarray experiment

Jakob Hedegaard; Cristina Arce; Silvio Bicciato; Agnès Bonnet; Bart Buitenhuis; Melania Collado-Romero; Lene Nagstrup Conley; Magali SanCristobal; Francesco Ferrari; Juan J. Garrido; M.A.M. Groenen; Henrik Hornshøj; Ina Hulsegge; Li Jiang; Ángeles Jiménez-Marín; Arun Kommadath; Sandrine Lagarrigue; Jack A. M. Leunissen; Laurence Liaubet; Pieter B. T. Neerincx; Haisheng Nie; Jan J. van der Poel; Dennis Prickett; M. Ramírez-Boo; J.M.J. Rebel; Christèle Robert-Granié; Axel Skarman; Mari A. Smits; Peter Sørensen; Gwenola Tosser-Klopp

BackgroundThe aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence) and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding) workshop focusing on post analysis of microarray data. The participating groups were provided with identical lists of microarray probes, including test statistics for three different contrasts, and the normalised log-ratios for each array, to be used as the starting point for interpreting the affected probes. The data originated from a microarray experiment conducted to study the host reactions in broilers occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria.ResultsSeveral conceptually different analytical approaches, using both commercial and public available software, were applied by the participating groups. The following tools were used: Ingenuity Pathway Analysis, MAPPFinder, LIMMA, GOstats, GOEAST, GOTM, Globaltest, TopGO, ArrayUnlock, Pathway Studio, GIST and AnnotationDbi. The main focus of the approaches was to utilise the relation between probes/genes and their gene ontology and pathways to interpret the affected probes/genes. The lack of a well-annotated chicken genome did though limit the possibilities to fully explore the tools. The main results from these analyses showed that the biological interpretation is highly dependent on the statistical method used but that some common biological conclusions could be reached.ConclusionIt is highly recommended to test different analytical methods on the same data set and compare the results to obtain a reliable biological interpretation of the affected genes in a DNA microarray experiment.


BMC Genomics | 2014

Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle

Bart Buitenhuis; Luc Janss; Nina Aagaard Poulsen; Lotte Bach Larsen; M.K. Larsen; Peter Sørensen

BackgroundThe milk fat profile of the Danish Holstein (DH) and Danish Jersey (DJ) show clear differences. Identification of the genomic regions, genes and biological pathways underlying the milk fat biosynthesis will improve the understanding of the biology underlying bovine milk fat production and may provide new possibilities to change the milk fat composition by selective breeding. In this study a genome wide association scan (GWAS) in the DH and DJ was performed for a detailed milk fatty acid (FA) profile using the HD bovine SNP array and subsequently a biological pathway analysis based on the SNP data was performed.ResultsThe GWAS identified in total 1,233 SNPs (FDR < 0.10) spread over 18 chromosomes for nine different FA traits for the DH breed and 1,122 SNPs (FDR < 0.10) spread over 26 chromosomes for 13 different FA traits were detected for the DJ breed. Of these significant SNPs, 108 SNP markers were significant in both DH and DJ (C14-index, BTA26; C16, BTA14; fat percentage (FP), BTA14). This was supported by an enrichment test. The QTL on BTA14 and BTA26 represented the known candidate genes DGAT and SCD. In addition we suggest ACSS3 to be a good candidate gene for the QTL on BTA5 for C10:0 and C15:0. In addition, genetic correlations between the FA traits within breed showed large similarity across breeds. Furthermore, the biological pathway analysis revealed that fat digestion and absorption (KEGG04975) plays a role for the traits FP, C14:1, C16 index and C16:1.ConclusionThere was a clear similarity between the underlying genetics of FA in the milk between DH and DJ. This was supported by the fact that there was substantial overlap between SNPs for FP, C14 index, C14:1, C16 index and C16:1. In addition genetic correlations between FA showed a similar pattern across DH and DJ. Furthermore the biological pathway analysis suggested that fat digestion and absorption KEGG04975 is important for the traits FP, C14:1, C16 index and C16:1.


BMC Genomics | 2014

Fine mapping QTL for female fertility on BTA04 and BTA13 in dairy cattle using HD SNP and sequence data

Johanna K Höglund; Goutam Sahana; Rasmus Froberg Brøndum; Bernt Guldbrandtsen; Bart Buitenhuis; Mogens Sandø Lund

BackgroundFemale fertility is important for the maintenance of the production in a dairy cattle herd. Two QTL regions on BTA04 and on BTA13 previously detected in Nordic Holstein (NH) and validated in the Danish Jersey (DJ) and Nordic Red (NR) were investigated further in the present study to further refine the QTL locations. Refined QTL regions were imputed to the full sequence data. The genes in the regions were then studied to ascertain their possible effect on fertility traits.ResultsBTA04 was screened for number of inseminations (AIS), 56-day non-return rate (NRR), days from first to last insemination (IFL), and the interval from calving to first insemination (ICF) in the range of 38,257,758 to 40,890,784 bp, whereas BTA13 was screened for ICF only in the range from 21,236,959 to 46,150,079 with the HD bovine SNP array for NH, DJ and NR. No markers in the DJ and NR breeds reached significance. By analyzing imputed sequence data the QTL position on BTA04 was narrowed down to two regions in the NH. In these two regions a total of 9 genes were identified. BTA13 was analyzed using sequence data for the NH breed. The highest –log10(P-value) was 19.41 at 33,903,159 bp. Two regions were identified: Region 1: 33,900,143-33,908,994 bp and Region 2: 34,051,815-34,056,728 bp. SNPs within and between these two regions were annotated as intergenic.ConclusionScreening BTA04 and BTA13 for female fertility traits in NH, NR and DJ suggested that the QTL for female fertility were specific for NH. A missense mutation in CD36 showed the strongest association with fertility traits on BTA04. The annotated SNPs on BTA13 were all intergenic variants. It is possible that BTA13 at this stage is poorly annotated such that the associated polymorphisms are located in as-yet undiscovered genes. Fertility traits are complex traits as many different biological and physiological factors determine whether a cow is fertile. Therefore it is not expected that there is a simple explanation with an obvious candidate gene but it is more likely a network of genes and intragenic variants that explain the variation of these traits.


Genetics Selection Evolution | 2007

Analysis of the real EADGENE data set: Comparison of methods and guidelines for data normalisation and selection of differentially expressed genes (Open Access publication)

Florence Jaffrézic; Dirk-Jan de Koning; Paul J. Boettcher; Agnès Bonnet; Bart Buitenhuis; R. Closset; Sébastien Déjean; Céline Delmas; Johanne Detilleux; Peter Dovč; Mylène Duval; Jean-Louis Foulley; Jakob Hedegaard; Henrik Hornshøj; Ina Hulsegge; Luc Janss; Kirsty Jensen; Li Jiang; Miha Lavric; Kim-Anh Lê Cao; Mogens Sandø Lund; Roberto Malinverni; Guillemette Marot; Haisheng Nie; Wolfram Petzl; M.H. Pool; Christèle Robert-Granié; Magali San Cristobal; Evert M. van Schothorst; Hans-Joachim Schuberth

A large variety of methods has been proposed in the literature for microarray data analysis. The aim of this paper was to present techniques used by the EADGENE (European Animal Disease Genomics Network of Excellence) WP1.4 participants for data quality control, normalisation and statistical methods for the detection of differentially expressed genes in order to provide some more general data analysis guidelines. All the workshop participants were given a real data set obtained in an EADGENE funded microarray study looking at the gene expression changes following artificial infection with two different mastitis causing bacteria: Escherichia coli and Staphylococcus aureus. It was reassuring to see that most of the teams found the same main biological results. In fact, most of the differentially expressed genes were found for infection by E. coli between uninfected and 24 h challenged udder quarters. Very little transcriptional variation was observed for the bacteria S. aureus. Lists of differentially expressed genes found by the different research teams were, however, quite dependent on the method used, especially concerning the data quality control step. These analyses also emphasised a biological problem of cross-talk between infected and uninfected quarters which will have to be dealt with for further microarray studies.


BMC Genetics | 2015

Genome-wide association study for female fertility in Nordic Red cattle.

Johanna K Höglund; Bart Buitenhuis; Bernt Guldbrandtsen; Mogens Sandø Lund; Goutam Sahana

BackgroundThe Nordic Red Cattle (NRC) consists of animls belonging to the Danish Red, Finnish Ayrshire, and Swedish Red breeds. Compared to the Holstein breed, NRC animals are smaller, have a shorter calving interval, lower mastitis incidence and lower rates of stillborn calves, however they produce less milk, fat and protein. Female fertility is an important trait for the dairy cattle farmer. Selection decisions in female fertilty in NRC are based on the female fertility index (FTI). FTI is a composite index including a number of sub-indices describing aspects of female fertility in dairy cattle. The sub-traits of FTI are: number of inseminations per conception (AIS) in cows (C) and heifers (H), the length in days of the interval from calving to first insemination (ICF) in cows, days from first to last insemination (IFL) in cows and heifers, and 56-day non-return rate (NRR) in cows and heifers. The aim of this study was first to identify QTL for FTI by conducting a genome scan for variants associated with fertility index using imputed whole genome sequence data based on 4207 Nordic Red sires, and subsequently analyzing which of the sub-traits were affected by each FTI QTL by associating them with the sub-traits.ResultsA total 17,388 significant SNP markers (−log10(P) > 8.25) were detected for FTI distributed over 25 chromosomes. The chromosomes with the most significant markers were tested for associations with the underlying sub-traits: BTA1 (822 SNP), BTA2 (220 SNP), BTA3 (83 SNP), BTA5 (195 SNP), two regions on BTA6 (503 SNP), BTA13 (980 SNP), BTA15 (23 SNP), BTA20 (345 SNP), and BTA24 (104 SNP). The fertility traits underlying the FTI peak area were: BTA1 (IFLC, IFLH), BTA2 (AISH, IFLH, NRRH), BTA3 (AISH, NRRH), BTA5 (AISC, AISH, IFLH), BTA6 (region 1: AISH, NRRH; region 2: AISH, IFLH), BTA13 (IFLH, IFLC), BTA15 (IFLC, NRRH), and BTA24 (AISH, IFLH). For BTA20 all sub-traits had SNP markers with a –log10(P) > 10. Furthermore the genes assigned to the most significant SNP for FTI were located on BTA6 (GPR125), BTA13 (ANKRD60), BTA15 (GRAMD1B), and BTA24 (ZNF521).ConclusionThis study 1) shows that many markers within FTI QTL regions were significantly associated with both AISH and IFLH, and 2) identified candidate genes for FTI located on BTA6 (GPR125), BTA13 (ANKRD60), BTA15 (GRAMD1B), and BTA24 (ZNF521). It is not known how the genes/variants identified in this study regulate female fertility, however the majority of these genes were involved in protein binding, 3) a SNP in a QTL region for FTI on BTA20 was previously validated in three cattle breeds.


BMC Genetics | 2013

Genetic parameters for milk fatty acids in Danish Holstein cattle based on SNP markers using a Bayesian approach.

Kristian Krag; Nina Aagaard Poulsen; M.K. Larsen; Lotte Bach Larsen; Luc Janss; Bart Buitenhuis

BackgroundFor several years, in human nutrition there has been a focus on the proportion of unsaturated fatty acids (UFA) and saturated fatty acids (SFA) found in bovine milk. The positive health-related properties of UFA versus SFA have increased the demand for food products with a higher proportion of UFA. To be able to change the UFA and SFA content of the milk by breeding it is important to know whether there is a genetic component underlying the individual FA in the milk. We have estimated the heritability for individual FA in the milk of Danish Holstein. For this purpose we used information of SNP markers instead of the traditional pedigree relationships.ResultsEstimates of heritability were moderate within the range of 0.10 for C18:1 trans-11 to 0.34 for C8:0 and C10:0, whereas the estimates for saturated fatty acids and unsaturated fatty acids were 0.14 and 0.18, respectively. Posterior standard deviations were in the range from 0.07 to 0.17. The correlation estimates showed a general pattern of two groups, one group mainly consisting of saturated fatty acids and one group mainly consisting of unsaturated fatty acids. The phenotypic correlation ranged from −0.95 (saturated fatty acids and unsaturated fatty acids) to 0.99 (unsaturated fatty acids and monounsaturated fatty acids) and the genomic correlation for fatty acids ranged from −0.29 to 0.91.ConclusionsThe heritability estimates obtained in this study are in general accordance with heritability estimates from studies using pedigree data and/or a genomic relationship matrix in the context of a REML approach. SFA and UFA expressed a strong negative phenotypic correlation and a weaker genetic correlation. This is in accordance with the theory that SFA is synthesized de novo, while UFA can be regulated independently from the regulation of SFA by the feeding regime.


Physiological Genomics | 2012

Transcriptional profiling of the bovine hepatic response to experimentally induced E. coli mastitis

Hanne B. H. Jørgensen; Bart Buitenhuis; Christine M. Røntved; Li Jiang; K.L. Ingvartsen; Peter Sørensen

The mammalian liver works to keep the body in a state of homeostasis and plays an important role in systemic acute phase response to infections. In this study we investigated the bovine hepatic acute phase response at the gene transcription level in dairy cows with experimentally Escherichia coli-induced mastitis. At time = 0, each of 16 periparturient dairy cows received 20-40 colony-forming units of live E. coli in one front quarter of the udder. A time series of liver biopsies was collected at -144, 12, 24, and 192 h relative to time of inoculation. Changes in transcription levels in response to E. coli inoculation were analyzed using the Bovine Genome Array and tested significant for 408 transcripts over the time series [adjusted p ≤ 0.05, abs(fold-change) > 2]. After 2-D clustering, transcripts represented three distinct transcription profiles: 1) regulation of gene transcription and apoptosis, 2) responses to cellular stress invoked by reactive metabolites, and 3) metabolism and turnover of proteins. The results showed that the liver went through a period of perturbations to its normal homeostatic condition during the first 24 h following the E. coli-induced intra-mammary inflammation. In previous studies, bacterial lipopolysaccharide, LPS, was used for intramammary stimulation to mimic E. coli infection. Comparing responses to LPS and E. coli, induced biochemical processes were similar but not identical (94 and 85% similarity between corresponding samples at early and late acute phase, respectively), but their kinetics were not. A notable difference concerned transcription of factors associated with oxidative stress in E. coli-induced liver responses.


BMC Proceedings | 2009

Using microarrays to identify positional candidate genes for QTL: the case study of ACTH response in pigs.

Vincent Jouffe; Suzanne Rowe; Laurence Liaubet; Bart Buitenhuis; Henrik Hornshøj; Magali SanCristobal; Pierre Mormède; Dirk-Jan de Koning

BackgroundMicroarray studies can supplement QTL studies by suggesting potential candidate genes in the QTL regions, which by themselves are too large to provide a limited selection of candidate genes. Here we provide a case study where we explore ways to integrate QTL data and microarray data for the pig, which has only a partial genome sequence. We outline various procedures to localize differentially expressed genes on the pig genome and link this with information on published QTL. The starting point is a set of 237 differentially expressed cDNA clones in adrenal tissue from two pig breeds, before and after treatment with adrenocorticotropic hormone (ACTH).ResultsDifferent approaches to localize the differentially expressed (DE) genes to the pig genome showed different levels of success and a clear lack of concordance for some genes between the various approaches. For a focused analysis on 12 genes, overlapping QTL from the public domain were presented. Also, differentially expressed genes underlying QTL for ACTH response were described. Using the latest version of the draft sequence, the differentially expressed genes were mapped to the pig genome. This enabled co-location of DE genes and previously studied QTL regions, but the draft genome sequence is still incomplete and will contain many errors. A further step to explore links between DE genes and QTL at the pathway level was largely unsuccessful due to the lack of annotation of the pig genome. This could be improved by further comparative mapping analyses but this would be time consuming.ConclusionThis paper provides a case study for the integration of QTL data and microarray data for a species with limited genome sequence information and annotation. The results illustrate the challenges that must be addressed but also provide a roadmap for future work that is applicable to other non-model species.


BMC Genetics | 2016

Estimation of genetic parameters and detection of chromosomal regions affecting the major milk proteins and their post translational modifications in Danish Holstein and Danish Jersey cattle

Bart Buitenhuis; Nina Aagaard Poulsen; Grum Gebreyesus; Lotte Bach Larsen

BackgroundIn the Western world bovine milk products are an important protein source in human diet. The major proteins in bovine milk are the four caseins (CN), αS1-, αS2-, β-, and k-CN and the two whey proteins, β-LG and α-LA. It has been shown that both the amount of specific CN and their isoforms including post-translational modifications (PTM) influence technological properties of milk. Therefore, the aim of this study was to 1) estimate genetic parameters for individual proteins in Danish Holstein (DH) (n = 371) and Danish Jersey (DJ) (n = 321) milk, and 2) detect genomic regions associated with specific milk protein and their different PTM forms using a genome-wide association study (GWAS) approach.ResultsFor DH, high heritability estimates were found for protein percentage (0.47), casein percentage (0.43), k-CN (0.77), β-LG (0.58), and α-LA (0.40). For DJ, high heritability estimates were found for protein percentage (0.70), casein percentage (0.52), and α-LA (0.44). The heritability for G-k-CN, U-k-CN and GD was higher in the DH compared to the DJ, whereas the heritability for the PD of αS1-CN was lower in DH compared to DJ, whereas the PD for αS2-CN was higher in DH compared to DJ. The GWAS results for the main milk proteins were in line what has been earlier published. However, we showed that there were SNPs specifically regulating G-k-CN in DH. Some of these SNPs were assigned to casein protein kinase genes (CSNK1G3, PRKCQ).ConclusionThe genetic analysis of the major milk proteins and their PTM forms revealed that these were heritable in both DH and DJ. In DH, genomic regions specific for glycosylation of k-CN were detected. Furthermore, genomic regions for the major milk proteins confirmed the regions on BTA6 (casein cluster), BTA11 (PEAP), and BTA14 (DGAT1) as important regions influencing protein composition in milk. The results from this study provide confidence that it is possible to breed for specific milk protein including the different PTM forms.

Collaboration


Dive into the Bart Buitenhuis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Céline Delmas

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge