Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernt Guldbrandtsen is active.

Publication


Featured researches published by Bernt Guldbrandtsen.


Nature Genetics | 2014

Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle

Hans D. Daetwyler; Aurélien Capitan; Hubert Pausch; Paul Stothard; Rianne van Binsbergen; Rasmus Froberg Brøndum; Xiaoping Liao; Anis Djari; Sabrina Rodriguez; Cécile Grohs; Diane Esquerre; Olivier Bouchez; Marie-Noëlle Rossignol; Christophe Klopp; Dominique Rocha; Sébastien Fritz; A. Eggen; Phil J. Bowman; David Coote; Amanda J. Chamberlain; Charlotte Anderson; Curt P VanTassell; Ina Hulsegge; Michael E. Goddard; Bernt Guldbrandtsen; Mogens Sandø Lund; Roel F. Veerkamp; Didier Boichard; Ruedi Fries; Ben J. Hayes

The 1000 bull genomes project supports the goal of accelerating the rates of genetic gain in domestic cattle while at the same time considering animal health and welfare by providing the annotated sequence variants and genotypes of key ancestor bulls. In the first phase of the 1000 bull genomes project, we sequenced the whole genomes of 234 cattle to an average of 8.3-fold coverage. This sequencing includes data for 129 individuals from the global Holstein-Friesian population, 43 individuals from the Fleckvieh breed and 15 individuals from the Jersey breed. We identified a total of 28.3 million variants, with an average of 1.44 heterozygous sites per kilobase for each individual. We demonstrate the use of this database in identifying a recessive mutation underlying embryonic death and a dominant mutation underlying lethal chrondrodysplasia. We also performed genome-wide association studies for milk production and curly coat, using imputed sequence variants, and identified variants associated with these traits in cattle.


Genetics Selection Evolution | 2011

A common reference population from four European Holstein populations increases reliability of genomic predictions.

Mogens Sandø Lund; Adrianus Pw de Roos; Alfred G de Vries; Tom Druet; Vincent Ducrocq; Sébastien Fritz; François Guillaume; Bernt Guldbrandtsen; Zenting Liu; Reinhard Reents; C. Schrooten; Franz R. Seefried; Guosheng Su

BackgroundSize of the reference population and reliability of phenotypes are crucial factors influencing the reliability of genomic predictions. It is therefore useful to combine closely related populations. Increased accuracies of genomic predictions depend on the number of individuals added to the reference population, the reliability of their phenotypes, and the relatedness of the populations that are combined.MethodsThis paper assesses the increase in reliability achieved when combining four Holstein reference populations of 4000 bulls each, from European breeding organizations, i.e. UNCEIA (France), VikingGenetics (Denmark, Sweden, Finland), DHV-VIT (Germany) and CRV (The Netherlands, Flanders). Each partner validated its own bulls using their national reference data and the combined data, respectively.ResultsCombining the data significantly increased the reliability of genomic predictions for bulls in all four populations. Reliabilities increased by 10%, compared to reliabilities obtained with national reference populations alone, when they were averaged over countries and the traits evaluated. For different traits and countries, the increase in reliability ranged from 2% to 19%.ConclusionsGenomic selection programs benefit greatly from combining data from several closely related populations into a single large reference population.


Nucleic Acids Research | 2008

Assembly and structural analysis of a covalently closed nano-scale DNA cage

Felicie F. Andersen; Bjarne Knudsen; Cristiano L. P. Oliveira; Rikke Frøhlich; Dinna Krüger; Jörg Bungert; Mavis Agbandje-McKenna; Robert McKenna; Sissel Juul; Christopher Veigaard; Jørn Koch; John L. Rubinstein; Bernt Guldbrandtsen; Marianne Smedegaard Hede; Göran Karlsson; Anni H. Andersen; Jan Skov Pedersen; Birgitta R. Knudsen

The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson–Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates for investigations of DNA-interacting enzymes. More recently, strategies for synthesis of more complex two-dimensional (2D) and 3D DNA structures have emerged. However, the building of such structures is still in progress and more experiences from different research groups and different fields of expertise are necessary before complex DNA structures can be routinely designed for the use in basal science and/or biotechnology. Here we present the design, construction and structural analysis of a covalently closed and stable 3D DNA structure with the connectivity of an octahedron, as defined by the double-stranded DNA helices that assembles from eight oligonucleotides with a yield of ∼30%. As demonstrated by Small Angle X-ray Scattering and cryo-Transmission Electron Microscopy analyses the eight-stranded DNA structure has a central cavity larger than the apertures in the surrounding DNA lattice and can be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures.


Journal of Dairy Science | 2010

Preliminary investigation on reliability of genomic estimated breeding values in the Danish Holstein population

Guosheng Su; Bernt Guldbrandtsen; Vivi Raundahl Gregersen; Mogens Sandø Lund

This study investigated the reliability of genomic estimated breeding values (GEBV) in the Danish Holstein population. The data in the analysis included 3,330 bulls with both published conventional EBV and single nucleotide polymorphism (SNP) markers. After data editing, 38,134 SNP markers were available. In the analysis, all SNP were fitted simultaneously as random effects in a Bayesian variable selection model, which allows heterogeneous variances for different SNP markers. The response variables were the official EBV. Direct GEBV were calculated as the sum of individual SNP effects. Initial analyses of 4 index traits were carried out to compare models with different intensities of shrinkage for SNP effects; that is, mixture prior distributions of scaling factors (standard deviation of SNP effects) assuming 5, 10, 20, or 50% of SNP having large effects and the others having very small or no effects, and a single prior distribution common for all SNP. It was found that, in general, the model with a common prior distribution of scaling factors had better predictive ability than any mixture prior models. Therefore, a common prior model was used to estimate SNP effects and breeding values for all 18 index traits. Reliability of GEBV was assessed by squared correlation between GEBV and conventional EBV (r(2)(GEBV, EBV)), and expected reliability was obtained from prediction error variance using a 5-fold cross validation. Squared correlations between GEBV and published EBV (without any adjustment) ranged from 0.252 to 0.700, with an average of 0.418. Expected reliabilities ranged from 0.494 to 0.733, with an average of 0.546. Averaged over 18 traits, r(2)(GEBV, EBV) was 0.13 higher and expected reliability was 0.26 higher than reliability of conventional parent average. The results indicate that genomic selection can greatly improve the accuracy of preselection for young bulls compared with traditional selection based on parent average information.


Journal of Dairy Science | 2012

Comparison of genomic predictions using medium-density (∼54,000) and high-density (∼777,000) single nucleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations

Guosheng Su; Rasmus Froberg Brøndum; P. Ma; Bernt Guldbrandtsen; Gert Pedersen Aamand; Mogens Sandø Lund

This study investigated genomic prediction using medium-density (∼54,000; 54K) and high-density marker panels (∼777,000; 777K), based on data from Nordic Holstein and Red Dairy Cattle (RDC). The Holstein data comprised 4,539 progeny-tested bulls, and the RDC data 4,403 progeny-tested bulls. The data were divided into reference data and test data using October 1, 2001, as a cut-off date (birth date of the bulls). This resulted in about 25% genotyped bulls in the Holstein test data and 20% in the RDC test data. For each breed, 3 data sets of markers were used to predict breeding values: (1) 54K data set with missing genotypes, (2) 54K data set where missing genotypes were imputed, and (3) imputed high-density (HD) marker data set created by imputing the 54K data to the HD data based on 557 bulls genotyped using a 777K single nucleotide polymorphism chip in Holstein, and 706 bulls in RDC. Based on the 3 marker data sets, direct genomic breeding values (DGV) for protein, fertility, and udder health were predicted using a genomic BLUP model (GBLUP) and a Bayesian mixture model with 2 normal distributions. Reliability of DGV was measured as squared correlations between deregressed proofs (DRP) and DGV corrected for reliability of DRP. Unbiasedness was assessed by regression of DRP on DGV, based on the bulls in the test data sets. Averaged over the 3 traits, reliability of DGV based on the HD markers was 0.5% higher than that based on the 54K data in Holstein, and 1.0% higher than that in RDC. In addition, the HD markers led to an improvement of unbiasedness of DGV. The Bayesian mixture model led to 0.5% higher reliability than the GBLUP model in Holstein, but not in RDC. Imputing missing genotypes in the 54K marker data did not improve genomic predictions for most of the traits.


Journal of Dairy Science | 2011

Effect of imputing markers from a low-density chip on the reliability of genomic breeding values in Holstein populations.

Romain Dassonneville; Rasmus Froberg Brøndum; Tom Druet; Sébastien Fritz; François Guillaume; Bernt Guldbrandtsen; Mogens Sandø Lund; Vincent Ducrocq; Guosheng Su

The purpose of this study was to investigate the imputation error and loss of reliability of direct genomic values (DGV) or genomically enhanced breeding values (GEBV) when using genotypes imputed from a 3,000-marker single nucleotide polymorphism (SNP) panel to a 50,000-marker SNP panel. Data consisted of genotypes of 15,966 European Holstein bulls from the combined EuroGenomics reference population. Genotypes with the low-density chip were created by erasing markers from 50,000-marker data. The studies were performed in the Nordic countries (Denmark, Finland, and Sweden) using a BLUP model for prediction of DGV and in France using a genomic marker-assisted selection approach for prediction of GEBV. Imputation in both studies was done using a combination of the DAGPHASE 1.1 and Beagle 2.1.3 software. Traits considered were protein yield, fertility, somatic cell count, and udder depth. Imputation of missing markers and prediction of breeding values were performed using 2 different reference populations in each country: either a national reference population or a combined EuroGenomics reference population. Validation for accuracy of imputation and genomic prediction was done based on national test data. Mean imputation error rates when using national reference animals was 5.5 and 3.9% in the Nordic countries and France, respectively, whereas imputation based on the EuroGenomics reference data set gave mean error rates of 4.0 and 2.1%, respectively. Prediction of GEBV based on genotypes imputed with a national reference data set gave an absolute loss of 0.05 in mean reliability of GEBV in the French study, whereas a loss of 0.03 was obtained for reliability of DGV in the Nordic study. When genotypes were imputed using the EuroGenomics reference, a loss of 0.02 in mean reliability of GEBV was detected in the French study, and a loss of 0.06 was observed for the mean reliability of DGV in the Nordic study. Consequently, the reliability of DGV using the imputed SNP data was 0.38 based on national reference data, and 0.48 based on EuroGenomics reference data in the Nordic validation, and the reliability of GEBV using the imputed SNP data was 0.41 based on national reference data, and 0.44 based on EuroGenomics reference data in the French validation.


Animal Genetics | 2010

Genome-wide association mapping for female fertility traits in Danish and Swedish Holstein cattle.

Goutam Sahana; Bernt Guldbrandtsen; Christian Bendixen; Mogens Sandø Lund

A genome-wide association study was conducted using a mixed model analysis for QTL for fertility traits in Danish and Swedish Holstein cattle. The analysis incorporated 2,531 progeny tested bulls, and a total of 36,387 SNP markers on 29 bovine autosomes were used. Eleven fertility traits were analyzed for SNP association. Furthermore, mixed model analysis was used for association analyses where a polygenic effect was fitted as a random effect, and genotypes at single SNPs were successively included as a fixed effect in the model. The Bonferroni correction for multiple testing was applied to adjust the significance threshold. Seventy-four SNP-trait combinations showed chromosome-wide significance, and five of these were significant genome-wide. Twenty-four QTL regions on 14 chromosomes were detected. Strong evidence for the presence of QTL that affect fertility traits were observed on chromosomes 3, 5, 10, 13, 19, 20, and 24. The QTL intervals were generally smaller than those described in earlier linkage studies. The identification of fertility trait-associated SNPs and mapping of the corresponding QTL in small chromosomal regions reported here will facilitate searches for candidate genes and candidate polymorphisms.


Journal of Dairy Science | 2011

Reliabilities of genomic prediction using combined reference data of the Nordic Red dairy cattle populations

Rasmus Froberg Brøndum; E. Rius-Vilarrasa; Ismo Strandén; Guosheng Su; Bernt Guldbrandtsen; W.F. Fikse; Mogens Sandø Lund

This study investigated the possibility of increasing the reliability of direct genomic values (DGV) by combining reference populations. The data were from 3,735 bulls from Danish, Swedish, and Finnish Red dairy cattle populations. Single nucleotide polymorphism markers were fitted as random variables in a Bayesian model, using published estimated breeding values as response variables. In total, 17 index traits were analyzed. Reliabilities were estimated using a 5-fold cross validation, and calculated as the within-year squared correlation between estimated breeding values and DGV. Marker effects were estimated using reference populations from individual countries, as well as using a combined reference population from all 3 countries. Single-country reference populations gave mean reliabilities across 17 traits of 0.19 to 0.23, whereas the combined reference gave mean reliabilities of 0.26 for all populations. Using marker effects from 1 population to predict the other 2 gave a loss in mean reliability of 0.14 to 0.21 when predicting Swedish or Finnish animals with Danish marker effects, or vice versa. Using Swedish or Finnish marker effects to predict each other only showed a loss in mean reliability of 0.03 to 0.05. A combined Swedish-Finnish reference population led to an average reliability as high as that from the 3-country reference population, but somewhat different for individual traits. The results from this study show that it is possible to increase the reliability of DGV by combining reference populations from related populations.


PLOS Genetics | 2014

A 660-Kb Deletion with Antagonistic Effects on Fertility and Milk Production Segregates at High Frequency in Nordic Red Cattle: Additional Evidence for the Common Occurrence of Balancing Selection in Livestock

Naveen K. Kadri; Goutam Sahana; Carole Charlier; Terhi Iso-Touru; Bernt Guldbrandtsen; Latifa Karim; U.S. Nielsen; Frank Panitz; Gert Pedersen Aamand; Nina Schulman; Michel Georges; Johanna Vilkki; Mogens Sandø Lund; Tom Druet

In dairy cattle, the widespread use of artificial insemination has resulted in increased selection intensity, which has led to spectacular increase in productivity. However, cow fertility has concomitantly severely declined. It is generally assumed that this reduction is primarily due to the negative energy balance of high-producing cows at the peak of lactation. We herein describe the fine-mapping of a major fertility QTL in Nordic Red cattle, and identify a 660-kb deletion encompassing four genes as the causative variant. We show that the deletion is a recessive embryonically lethal mutation. This probably results from the loss of RNASEH2B, which is known to cause embryonic death in mice. Despite its dramatic effect on fertility, 13%, 23% and 32% of the animals carry the deletion in Danish, Swedish and Finnish Red Cattle, respectively. To explain this, we searched for favorable effects on other traits and found that the deletion has strong positive effects on milk yield. This study demonstrates that embryonic lethal mutations account for a non-negligible fraction of the decline in fertility of domestic cattle, and that associated positive effects on milk yield may account for part of the negative genetic correlation. Our study adds to the evidence that structural variants contribute to animal phenotypic variation, and that balancing selection might be more common in livestock species than previously appreciated.


Journal of Animal Science | 2010

A genome-wide association study for milk production traits in Danish Jersey cattle using a 50K single nucleotide polymorphism chip

M. D. Mai; Goutam Sahana; Freddy Bugge Christiansen; Bernt Guldbrandtsen

Quantitative trait loci for milk production traits in Danish Jersey cattle were mapped by a genome-wide association analysis using a mixed model. The analysis incorporated 1,039 bulls and 33,090 SNP and resulted in 98 detected combinations of QTL and traits on 27 BTA. These QTL comprised 30 for milk index, 50 for fat index, and 18 for protein index. The evidence presents 33 genome-wide QTL on 14 BTA. Of these, 7 had effects on milk index, 21 on fat index, and 5 on protein index. Among the genome-wide QTL, 26 have been previously reported, 2 on BTA4 and BTA5 were new for milk index, and 5 on BTA4, BTA5, BTA13, BTA20, and BTA29 were new QTL for fat index. We found 7 pleiotropic or very closely linked QTL. Most of the QTL were associated with polymorphisms within narrow regions and several may represent the effects of polymorphisms of genes: DGAT1, casein, ARFGAP3, CYP11B1, and CDC-like kinase 4. By a chromosome-wide threshold, 65 additional QTL were detected. Many of them are likely to represent QTL. The results are interesting from a breeding perspective and contribute to the search for the genes causing the polymorphisms important for milk production traits.

Collaboration


Dive into the Bernt Guldbrandtsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Didier Boichard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge