Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bart C. De Jonghe is active.

Publication


Featured researches published by Bart C. De Jonghe.


Journal of Clinical Investigation | 2010

PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice

Ryoichi Banno; Derek J. Zimmer; Bart C. De Jonghe; Marybless B Atienza; Kimberly Rak; Wentian Yang; Kendra K. Bence

Protein tyrosine phosphatase 1B (PTP1B) and SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) have been shown in mice to regulate metabolism via the central nervous system, but the specific neurons mediating these effects are unknown. Here, we have shown that proopiomelanocortin (POMC) neuron-specific deficiency in PTP1B or SHP2 in mice results in reciprocal effects on weight gain, adiposity, and energy balance induced by high-fat diet. Mice with POMC neuron-specific deletion of the gene encoding PTP1B (referred to herein as POMC-Ptp1b-/- mice) had reduced adiposity, improved leptin sensitivity, and increased energy expenditure compared with wild-type mice, whereas mice with POMC neuron-specific deletion of the gene encoding SHP2 (referred to herein as POMC-Shp2-/- mice) had elevated adiposity, decreased leptin sensitivity, and reduced energy expenditure. POMC-Ptp1b-/- mice showed substantially improved glucose homeostasis on a high-fat diet, and hyperinsulinemic-euglycemic clamp studies revealed that insulin sensitivity in these mice was improved on a standard chow diet in the absence of any weight difference. In contrast, POMC-Shp2-/- mice displayed impaired glucose tolerance only secondary to their increased weight gain. Interestingly, hypothalamic Pomc mRNA and alpha-melanocyte-stimulating hormone (alphaMSH) peptide levels were markedly reduced in POMC-Shp2-/- mice. These studies implicate PTP1B and SHP2 as important components of POMC neuron regulation of energy balance and point to what we believe to be a novel role for SHP2 in the normal function of the melanocortin system.


Neuropharmacology | 2012

The role of nausea in food intake and body weight suppression by peripheral GLP-1 receptor agonists, exendin-4 and liraglutide.

Scott E. Kanoski; Laura E. Rupprecht; Samantha M. Fortin; Bart C. De Jonghe; Matthew R. Hayes

The FDA-approved glucagon-like-peptide-1 receptor (GLP-1R) agonists exendin-4 and liraglutide reduce food intake and body weight. Nausea is the most common adverse side effect reported with these GLP-1R agonists. Whether food intake suppression by exendin-4 and liraglutide occurs independently of nausea is unknown. Further, the neurophysiological mechanisms mediating the nausea associated with peripheral GLP-1R agonist use are poorly understood. Using two established rodent models of nausea [conditioned taste avoidance (CTA) and pica (ingestion of nonnutritive substances)], results show that all peripheral doses of exendin-4 that suppress food intake also produce CTA, whereas one dose of liraglutide suppresses intake without producing CTA. Chronic (12 days) daily peripheral administration of exendin-4 produces a progressive increase in pica coupled with stable, sustained food intake and body weight suppression, whereas the pica response and food intake reduction by daily liraglutide are more transient. Results demonstrate that the nausea response accompanying peripheral exendin-4 occurs via a vagal-independent pathway involving GLP-1R activation in the brain as the exendin-4-induced pica response is attenuated with CNS co-administration of the GLP-1R antagonist exendin-(9-39), but not by vagotomy. Direct administration of exendin-4 to the medial subnucleus of the nucleus tractus solitarius (mNTS), but not to the central nucleus of the amygdala, reduced food intake and produced a pica response, establishing the mNTS as a potential GLP-1R-expressing site mediating nausea responses associated with GLP-1R agonists.


Cell Metabolism | 2011

Intracellular Signals Mediating the Food Intake-Suppressive Effects of Hindbrain Glucagon-like Peptide-1 Receptor Activation

Matthew R. Hayes; Theresa M. Leichner; Shiru Zhao; Grace S. Lee; Amy Chowansky; Derek J. Zimmer; Bart C. De Jonghe; Scott E. Kanoski; Harvey J. Grill; Kendra K. Bence

Glucagon-like peptide-1 receptor (GLP-1R) activation within the nucleus tractus solitarius (NTS) suppresses food intake and body weight (BW), but the intracellular signals mediating these effects are unknown. Here, hindbrain (fourth i.c.v.) GLP-1R activation by Exendin-4 (Ex-4) increased PKA and MAPK activity and decreased phosphorylation of AMPK in NTS. PKA and MAPK signaling contribute to food intake and BW suppression by Ex-4, as inhibitors RpcAMP and U0126 (fourth i.c.v.), respectively, attenuated Ex-4s effects. Hindbrain GLP-1R activation inhibited feeding by reducing meal number, not meal size. This effect was attenuated with stimulation of AMPK activity by AICAR (fourth i.c.v.). The PKA, MAPK, and AMPK signaling responses by Ex-4 were present in immortalized GLP-1R-expressing neurons (GT1-7). In conclusion, hindbrain GLP-1R activation suppresses food intake and BW through coordinated PKA-mediated suppression of AMPK and activation of MAPK. Pharmacotherapies targeting these signaling pathways, which mediate intake-suppressive effects of CNS GLP-1R activation, may prove efficacious in treating obesity.


Physiology & Behavior | 2010

Role of the Glucagon-Like-Peptide-1 Receptor in the Control of Energy Balance

Matthew R. Hayes; Bart C. De Jonghe; Scott E. Kanoski

The peripheral and central glucagon-like-peptide-1 (GLP-1) systems play an essential role in glycemic and energy balance regulation. Thus, pharmacological targeting of peripheral and/or central GLP-1 receptors (GLP-1R) may represent a potential long-term treatment option for both obesity and type-II diabetes mellitus (T2DM). Uncovering and understanding the neural pathways, physiological mechanisms, specific GLP-1R populations, and intracellular signaling cascades that mediate the food intake inhibitory and incretin effects produced by GLP-1R activation are vital to the development of these potential successful therapeutics. Particular focus will be given to the essential role of the nucleus tractus solitarius (NTS) in the caudal brainstem, as well as the gut-to-brain communication by vagal afferent fibers in mediating the physiological and behavioral responses following GLP-1R activation. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

The common hepatic branch of the vagus is not required to mediate the glycemic and food intake suppressive effects of glucagon-like-peptide-1

Matthew R. Hayes; Scott E. Kanoski; Bart C. De Jonghe; Theresa M. Leichner; Amber L. Alhadeff; Samantha M. Fortin; Myrtha Arnold; Wolfgang Langhans; Harvey J. Grill

The incretin and food intake suppressive effects of intraperitoneally administered glucagon-like peptide-1 (GLP-1) involve activation of GLP-1 receptors (GLP-1R) expressed on vagal afferent fiber terminals. Central nervous system processing of GLP-1R-driven vagal afferents results in satiation signaling and enhanced insulin secretion from pancreatic-projecting vagal efferents. As the vast majority of endogenous GLP-1 is released from intestinal l-cells following ingestion, it stands to reason that paracrine GLP-1 signaling, activating adjacent GLP-1R expressed on vagal afferent fibers of gastrointestinal origin, contributes to glycemic and food intake control. However, systemic GLP-1R-mediated control of glycemia is currently attributed to endocrine action involving GLP-1R expressed in the hepatoportal bed on terminals of the common hepatic branch of the vagus (CHB). Here, we examine the hypothesis that activation of GLP-1R expressed on the CHB is not required for GLP-1s glycemic and intake suppressive effects, but rather paracrine signaling on non-CHB vagal afferents is required to mediate GLP-1s effects. Selective CHB ablation (CHBX), complete subdiaphragmatic vagal deafferentation (SDA), and surgical control rats received an oral glucose tolerance test (2.0 g glucose/kg) 10 min after an intraperitoneal injection of the GLP-1R antagonist, exendin-(9-39) (Ex-9; 0.5 mg/kg) or vehicle. CHBX and control rats showed comparable increases in blood glucose following blockade of GLP-1R by Ex-9, whereas SDA rats failed to show a GLP-1R-mediated incretin response. Furthermore, GLP-1(7-36) (0.5 mg/kg ip) produced a comparable suppression of 1-h 25% glucose intake in both CHBX and control rats, whereas intake suppression in SDA rats was blunted. These findings support the hypothesis that systemic GLP-1R mediation of glycemic control and food intake suppression involves paracrine-like signaling on GLP-1R expressed on vagal afferent fibers of gastrointestinal origin but does not require the CHB.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Chemotherapy agent cisplatin induces 48-h Fos expression in the brain of a vomiting species, the house musk shrew (Suncus murinus)

Bart C. De Jonghe; Charles C. Horn

Cancer chemotherapy drugs, such as cisplatin, potently produce nausea and vomiting. Acute effects of these treatments are partly controlled by antiemetic drugs, but the delayed effects (>24 h), especially nausea, are more difficult to treat. It is unknown what brain pathways produce this delayed sickness. Our prior data show that brain Fos expression is increased for at least 48 h after cisplatin treatment in the rat, a nonvomiting species. Here, we extend these observations by using house musk shrews (Suncus murinus), a species with an emetic response. Compared with saline injection, cisplatin treatment (30 mg/kg ip) induced Fos expression in hindbrain areas known to play a role in the generation of emesis, the dorsal motor nucleus (DMN), the area postrema, and the nucleus of the solitary tract (NTS), for up to 48 h. Cisplatin also stimulated Fos expression in the parabrachial nucleus (PBN) of the midbrain and the central nucleus of the amygdala (CeA) for at least 48 h after treatment. When animals were pretreated with the antiemetic palonosetron, a long-term serotonin type 3 (5-HT(3)) receptor antagonist, cisplatin-induced Fos expression was significantly attenuated in the NTS, DMN, and CeA at 6 h but not at 48 h. These results indicate that cisplatin activates a neural system that includes the dorsal vagal complex and forebrain in the musk shrew, which is partially suppressed by a 5-HT(3) receptor antagonist. Our findings suggest the existence of an extensive neural system that could be targeted to reduce nausea, vomiting, and malaise in cancer patients receiving chemotherapy.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Chemotherapy-induced pica and anorexia are reduced by common hepatic branch vagotomy in the rat

Bart C. De Jonghe; Charles C. Horn

Anticancer agents, such as cisplatin, induce vomiting, nausea, and anorexia. Cisplatin primarily acts on vagal afferents to produce emesis, but little is known about how this drug generates nausea and anorexia. Electrophysiology indicates that cisplatin activates vagal afferents of the common hepatic branch (CHB). Rats lack an emetic response but do ingest kaolin clay (a pica response) when made sick by toxins, and this behavior can be inhibited by antiemetic drugs. It has been postulated that pica may serve as a proxy for emesis in the rat. The goal of this study was to assess the effect of CHB or ventral gastric (Gas) or celiac (Cel) branch vagotomies on pica and anorexia produced by cisplatin in the rat. The effects of apomorphine, a dopamine receptor agonist, which induces emesis via a central mechanism, were also assessed. Cisplatin-induced pica was suppressed by CHB vagotomy (a 61% reduction) but not by Gas and Cel vagotomy. Suppression of daily food intake and body weight following cisplatin treatment was also blunted by CHB ablation but not by Gas or Cel vagotomy. No vagotomy condition exhibited altered apomorphine-induced pica. The results indicate that the CHB, which innervates primarily the duodenum, plays an important role in cisplatin-induced malaise. These data suggest that pica has sensory pathways similar to emetic systems, since a vagotomy condition inhibited cisplatin-induced pica but had no effect on apomorphine-induced pica. This investigation contributes to the delineation of the physiology of pica and neural systems involved in malaise in the nonvomiting rat.


Physiology & Behavior | 2009

Pica as an adaptive response: Kaolin consumption helps rats recover from chemotherapy-induced illness

Bart C. De Jonghe; M.P. Lawler; Charles C. Horn; Michael G. Tordoff

Clay consumption can occur during illness but there has been little work to understand why. To investigate whether consuming clay confers an advantage to the sick animal, we compared the recovery from illness of adult male rats with or without access to kaolin. Illness was induced by injection of 6 mg/kg, ip, cisplatin, a toxic chemotherapy agent, and recovery was assessed by changes in daily food intake, water intake, and body weight. Relative to saline-injected controls, cisplatin-injected rats reduced food and water intake and lost weight. However, those with access to kaolin ate more food and lost less body weight than did those without access to kaolin. Thus, clay consumption appeared beneficial in that it either protected the rats from illness or enhanced recovery and might prove useful as an adjunct therapy for other animals, including humans, experiencing visceral malaise.


Endocrinology | 2012

Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice.

Ryan C. Tsou; Derek J. Zimmer; Bart C. De Jonghe; Kendra K. Bence

Protein tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed tyrosine phosphatase implicated in the negative regulation of leptin and insulin receptor signaling. PTP1B(-/-) mice possess a lean metabolic phenotype attributed at least partially to improved hypothalamic leptin sensitivity. Interestingly, mice lacking both leptin and PTP1B (ob/ob:PTP1B(-/-)) have reduced body weight compared with mice lacking leptin only, suggesting that PTP1B may have important leptin-independent metabolic effects. We generated mice with PTP1B deficiency specifically in leptin receptor (LepRb)-expressing neurons (LepRb-PTP1B(-/-)) and compared them with LepRb-Cre-only wild-type (WT) controls and global PTP1B(-/-) mice. Consistent with PTP1Bs role as a negative regulator of leptin signaling, our results show that LepRb-PTP1B(-/-) mice are leptin hypersensitive and have significantly reduced body weight when maintained on chow or high-fat diet (HFD) compared with WT controls. LepRb-PTP1B(-/-) mice have a significant decrease in adiposity on HFD compared with controls. Notably, the extent of attenuated body weight gain on HFD, as well as the extent of leptin hypersensitivity, is similar between LepRb-PTP1B(-/-) mice and global PTP1B(-/-) mice. Overall, these results demonstrate that PTP1B deficiency in LepRb-expressing neurons results in reduced body weight and adiposity compared with WT controls and likely underlies the improved metabolic phenotype of global and brain-specific PTP1B-deficient models. Subtle phenotypic differences between LepRb-PTP1B(-/-) and global PTP1B(-/-) mice, however, suggest that PTP1B independent of leptin signaling may also contribute to energy balance in mice.


Annual Review of Nutrition | 2014

Incretins and Amylin: Neuroendocrine Communication Between the Gut, Pancreas, and Brain in Control of Food Intake and Blood Glucose

Matthew R. Hayes; Elizabeth G. Mietlicki-Baase; Scott E. Kanoski; Bart C. De Jonghe

Arguably the most fundamental physiological systems for all eukaryotic life are those governing energy balance. Without sufficient energy, an individual is unable to survive and reproduce. Thus, an ever-growing appreciation is that mammalian physiology developed a redundant set of neuroendocrine signals that regulate energy intake and expenditure, which maintains sufficient circulating energy, predominantly in the form of glucose, to ensure that energy needs are met throughout the body. This orchestrated control requires cross talk between the gastrointestinal tract, which senses the incoming meal; the pancreas, which produces glycemic counterregulatory hormones; and the brain, which controls autonomic and behavioral processes regulating energy balance. Therefore, this review highlights the physiological, pharmacological, and pathophysiological effects of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide, as well as the pancreatic hormone amylin, on energy balance and glycemic control.

Collaboration


Dive into the Bart C. De Jonghe's collaboration.

Top Co-Authors

Avatar

Matthew R. Hayes

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Scott E. Kanoski

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Kendra K. Bence

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Derek J. Zimmer

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Harvey J. Grill

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Amber L. Alhadeff

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruby A. Holland

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Andras Hajnal

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge