Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew R. Hayes is active.

Publication


Featured researches published by Matthew R. Hayes.


Cell Metabolism | 2012

Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance.

Harvey J. Grill; Matthew R. Hayes

This Review highlights the processing and integration performed by hindbrain nuclei, focusing on the inputs received by nucleus tractus solitarius (NTS) neurons. These inputs include vagally mediated gastrointestinal satiation signals, blood-borne energy-related hormonal and nutrient signals, and descending neural signals from the forebrain. We propose that NTS (and hindbrain neurons, more broadly) integrate these multiple energy status signals and issue-output commands controlling the behavioral, autonomic, and endocrine responses that collectively govern energy balance. These hindbrain-mediated controls are neuroanatomically distributed; they involve endemic hindbrain neurons and circuits, hindbrain projections to peripheral circuits, and projections to and from midbrain and forebrain nuclei.


Endocrinology | 2011

Peripheral and Central GLP-1 Receptor Populations Mediate the Anorectic Effects of Peripherally Administered GLP-1 Receptor Agonists, Liraglutide and Exendin-4

Scott E. Kanoski; Samantha M. Fortin; Myrtha Arnold; Harvey J. Grill; Matthew R. Hayes

UNLABELLED The long-acting glucagon-like peptide-1 receptor (GLP-1R) agonists, exendin-4 and liraglutide, suppress food intake and body weight. The mediating site(s) of action for the anorectic effects produced by peripheral administration of these GLP-1R agonists are not known. Experiments addressed whether food intake suppression after i.p. delivery of exendin-4 and liraglutide is mediated exclusively by peripheral GLP-1R or also involves direct central nervous system (CNS) GLP-1R activation. Results showed that CNS delivery [third intracerebroventricular (3(rd) ICV)] of the GLP-1R antagonist exendin-(9-39) (100 μg), attenuated the intake suppression by i.p. liraglutide (10 μg) and exendin-4 (3 μg), particularly at 6 h and 24 h. Control experiments show that these findings appear to be based neither on the GLP-1R antagonist acting as a nonspecific competing orexigenic signal nor on blockade of peripheral GLP-1R via efflux of exendin-(9-39) to the periphery. To assess the contribution of GLP-1R expressed on subdiaphragmatic vagal afferents to the anorectic effects of liraglutide and exendin-4, food intake was compared in rats with complete subdiaphragmatic vagal deafferentation and surgical controls after i.p. delivery of the agonists. Both liraglutide and exendin-4 suppressed food intake at 3 h, 6 h, and 24 h for controls; for subdiaphragmatic vagal deafferentation rats higher doses of the GLP-1R agonists were needed for significant food intake suppression, which was observed at 6 h and 24 h after liraglutide and at 24 h after exendin-4. CONCLUSION Food intake suppression after peripheral administration of exendin-4 and liraglutide is mediated by activation of GLP-1R expressed on vagal afferents as well as direct CNS GLP-1R activation.


Endocrinology | 2009

Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling.

Matthew R. Hayes; Lauren E. Bradley; Harvey J. Grill

Exogenous activation of central nervous system glucagon-like peptide-1 (GLP-1) receptors (GLP-1Rs) reduces food intake. Experiments addressed whether endogenous central GLP-1R activity is involved in the control of normal feeding and examined which gastrointestinal satiation signals contribute to this control. Given that nucleus tractus solitarius (NTS) neurons are the source of central GLP-1, that caudal brainstem circuits mediate the intake suppression triggered by exogenous hindbrain GLP-1R activation, and that these neurons process gastrointestinal vagal signals, the role of endogenous hindbrain GLP-1R activation to intake control was the focus of the analysis. Food intake increased with GLP-1R antagonist [Exendin-(9-39) (Ex-9)] [10 microg, fourth intracerebroventricular (icv)] delivery to overnight food-deprived rats after ingestion of 9 ml Ensure diet. Direct medial NTS injection of a ventricle subthreshold dose (1.0 microg) of Ex-9 increased food intake and established the contribution of this GLP-1R population to the effect observed with ventricular administration. To determine whether satiation signals of gastric vs. intestinal origin drive the GLP-1R-mediated NTS effect on food intake, two experiments were performed in overnight-fasted rats. In one, Ensure was infused intraduodenally (0.4 ml/min for 20 min); in another, the stomach was distended (9 ml SILASTIC brand balloon) for 15 min before fourth icv Ex-9. The intake suppression by duodenal nutrient infusion was not affected by GLP-1R blockade, but the feeding suppression after gastric distension was significantly attenuated by fourth icv Ex-9. We conclude that endogenous NTS GLP-1R activation driven by gastric satiation signals contributes to the control of normal feeding.


Neuropharmacology | 2012

The role of nausea in food intake and body weight suppression by peripheral GLP-1 receptor agonists, exendin-4 and liraglutide.

Scott E. Kanoski; Laura E. Rupprecht; Samantha M. Fortin; Bart C. De Jonghe; Matthew R. Hayes

The FDA-approved glucagon-like-peptide-1 receptor (GLP-1R) agonists exendin-4 and liraglutide reduce food intake and body weight. Nausea is the most common adverse side effect reported with these GLP-1R agonists. Whether food intake suppression by exendin-4 and liraglutide occurs independently of nausea is unknown. Further, the neurophysiological mechanisms mediating the nausea associated with peripheral GLP-1R agonist use are poorly understood. Using two established rodent models of nausea [conditioned taste avoidance (CTA) and pica (ingestion of nonnutritive substances)], results show that all peripheral doses of exendin-4 that suppress food intake also produce CTA, whereas one dose of liraglutide suppresses intake without producing CTA. Chronic (12 days) daily peripheral administration of exendin-4 produces a progressive increase in pica coupled with stable, sustained food intake and body weight suppression, whereas the pica response and food intake reduction by daily liraglutide are more transient. Results demonstrate that the nausea response accompanying peripheral exendin-4 occurs via a vagal-independent pathway involving GLP-1R activation in the brain as the exendin-4-induced pica response is attenuated with CNS co-administration of the GLP-1R antagonist exendin-(9-39), but not by vagotomy. Direct administration of exendin-4 to the medial subnucleus of the nucleus tractus solitarius (mNTS), but not to the central nucleus of the amygdala, reduced food intake and produced a pica response, establishing the mNTS as a potential GLP-1R-expressing site mediating nausea responses associated with GLP-1R agonists.


Endocrinology | 2008

Caudal Brainstem Processing Is Sufficient for Behavioral, Sympathetic, and Parasympathetic Responses Driven by Peripheral and Hindbrain Glucagon-Like-Peptide-1 Receptor Stimulation

Matthew R. Hayes; Karolina P. Skibicka; Harvey J. Grill

The effects of peripheral glucagon like peptide-1 receptor (GLP-1R) stimulation on feeding, gastric emptying, and energetic responses involve vagal transmission and central nervous system processing. Despite a lack of studies aimed at determining which central nervous system regions are critical for the GLP-1R response production, hypothalamic/forebrain processing is regarded as essential for these effects. Here the contribution of the caudal brainstem to the control of food intake, core temperature, heart rate, and gastric emptying responses generated by peripheral delivery of the GLP-1R agonist, exendin-4 (Ex-4), was assessed by comparing responses of chronic supracollicular decerebrate (CD) rats to those of pair-fed intact control rats. Responses driven by hindbrain intracerebroventricular (fourth i.c.v) delivery of Ex-4 were also evaluated. Intraperitoneal Ex-4 (1.2 and 3.0 microg/kg) suppressed glucose intake in both CD rats (5.0+/-1.2 and 4.4+/-1.1 ml ingested) and controls (9.4+/-1.5 and 7.7+/-0.8 ml ingested), compared with intakes after vehicle injections (13.1+/-2.5 and 13.2+/-1.7 ml ingested, respectively). Hindbrain ventricular Ex-4 (0.3 microg) also suppressed food intake in CD rats (4.7+/-0.6 ml ingested) and controls (11.0+/-2.9 ml ingested), compared with vehicle intakes (9.3+/-2.1 and 19.3+/-4.3 ml ingested, respectively). Intraperitoneal Ex-4 (0.12, 1.2, 2.4 microg/kg) reduced gastric emptying rates in a dose-related manner similarly for both CD and control rats. Hypothermia followed ip and fourth i.c.v Ex-4 in awake, behaving controls (0.6 and 1.0 C average suppression) and CD rats (1.5 and 2.5 C average suppression). Intraperitoneal Ex-4 triggered tachycardia in both control and CD rats. Results demonstrate that caudal brainstem processing is sufficient for mediating the suppression of intake, core temperature, and gastric emptying rates as well as tachycardia triggered by peripheral GLP-1R activation and also hindbrain-delivered ligand. Contrary to the literature, hypothalamic/forebrain processing and forebrain-caudal brainstem communication is not required for the observed responses.


Physiology & Behavior | 2010

Role of the Glucagon-Like-Peptide-1 Receptor in the Control of Energy Balance

Matthew R. Hayes; Bart C. De Jonghe; Scott E. Kanoski

The peripheral and central glucagon-like-peptide-1 (GLP-1) systems play an essential role in glycemic and energy balance regulation. Thus, pharmacological targeting of peripheral and/or central GLP-1 receptors (GLP-1R) may represent a potential long-term treatment option for both obesity and type-II diabetes mellitus (T2DM). Uncovering and understanding the neural pathways, physiological mechanisms, specific GLP-1R populations, and intracellular signaling cascades that mediate the food intake inhibitory and incretin effects produced by GLP-1R activation are vital to the development of these potential successful therapeutics. Particular focus will be given to the essential role of the nucleus tractus solitarius (NTS) in the caudal brainstem, as well as the gut-to-brain communication by vagal afferent fibers in mediating the physiological and behavioral responses following GLP-1R activation. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009.


Neuropsychopharmacology | 2011

Hippocampal Leptin Signaling Reduces Food Intake and Modulates Food-Related Memory Processing

Scott E. Kanoski; Matthew R. Hayes; Holly S. Greenwald; Samantha M. Fortin; Carol A Gianessi; Jennifer R Gilbert; Harvey J. Grill

The increase in obesity prevalence highlights the need for a more comprehensive understanding of the neural systems controlling food intake; one that extends beyond food intake driven by metabolic need and considers that driven by higher-order cognitive factors. The hippocampus, a brain structure involved in learning and memory function, has recently been linked with food intake control. Here we examine whether administration of the adiposity hormone leptin to the dorsal and ventral sub-regions of the hippocampus influences food intake and memory for food. Leptin (0.1 μg) delivered bilaterally to the ventral hippocampus suppressed food intake and body weight measured 24 h after administration; a higher dose (0.4 μg) was needed to suppress intake following dorsal hippocampal delivery. Leptin administration to the ventral but not dorsal hippocampus blocked the expression of a conditioned place preference for food and increased the latency to run for food in an operant runway paradigm. Additionally, ventral but not dorsal hippocampal leptin delivery suppressed memory consolidation for the spatial location of food, whereas hippocampal leptin delivery had no effect on memory consolidation in a non-spatial appetitive response paradigm. Collectively these findings indicate that ventral hippocampal leptin signaling contributes to the inhibition of food-related memories elicited by contextual stimuli. To conclude, the results support a role for hippocampal leptin signaling in the control of food intake and food-related memory processing.


Endocrinology | 2009

Dorsal Hindbrain 5′-Adenosine Monophosphate-Activated Protein Kinase as an Intracellular Mediator of Energy Balance

Matthew R. Hayes; Karolina P. Skibicka; Kendra K. Bence; Harvey J. Grill

The fuel-sensing enzyme AMP-activated protein kinase (AMPK) has been implicated in central nervous system control of energy balance. Hypothalamic AMPK activity is increased by food deprivation, and this elevation is inhibited by refeeding or by leptin treatment. The contribution of extrahypothalamic AMPK activity in energy balance control has not been addressed. Here, we investigate the effects of physiological state on the AMPK activity in hindbrain nucleus tractus solitarius (NTS) neurons because treatments that reduce energy availability in these neurons trigger behavioral, endocrine, and autonomic responses to restore energy balance. Food-deprived rats showed significantly increased AMPK activity in both NTS- and hypothalamus-enriched lysates compared with those that were ad libitum fed. Pharmacological inhibition of AMPK activity in medial NTS neurons, by intraparenchymal injection of compound C, suppressed food intake and body weight gain compared with vehicle. Fourth ventricle (4th i.c.v.) compound C delivery increased heart rate and spontaneous activity in free-moving rats. Suppression of AMPK activity has been implicated in leptins anorectic action in the hypothalamus. Given the role of leptin signaling in food intake inhibition within the medial NTS, we also examined whether stimulation of hindbrain AMPK by 4th i.c.v. administration of 5-aminoimidazole-4-carboxamide-riboside (AICAR), an AMP-mimicking promoter of AMPK activity, could attenuate the inhibition of food intake by 4th i.c.v. leptin. The intake-suppressive effects of leptin (at 2 and 4 h) were completely reversed by AICAR. We conclude that 1) hindbrain AMPK activity contributes to energy balance control through regulation of food intake and energy expenditure, 2) leptins intake-reducing effects in the NTS are mediated by AMPK, and 3) central nervous system AMPK controls whole-body homeostasis at anatomically distributed sites across the neuraxis.


American Journal of Physiology-endocrinology and Metabolism | 2013

The food intake-suppressive effects of glucagon-like peptide-1 receptor signaling in the ventral tegmental area are mediated by AMPA/kainate receptors.

Elizabeth G. Mietlicki-Baase; Pavel I. Ortinski; Laura E. Rupprecht; Diana R. Olivos; Amber L. Alhadeff; R. Christopher Pierce; Matthew R. Hayes

Glucagon-like peptide-1 receptor (GLP-1R) activation in the ventral tegmental area (VTA) is physiologically relevant for the control of palatable food intake. Here, we tested whether the food intake-suppressive effects of VTA GLP-1R activation are mediated by glutamatergic signaling within the VTA. Intra-VTA injections of the GLP-1R agonist exendin-4 (Ex-4) reduced palatable high-fat food intake in rats primarily by reducing meal size; these effects were mediated in part via glutamatergic AMPA/kainate but not NMDA receptor signaling. Additional behavioral data indicated that GLP-1R expressed specifically within the VTA can partially mediate the intake- and body weight-suppressive effects of systemically administered Ex-4, offering the intriguing possibility that this receptor population may be clinically relevant for food intake control. Intra-VTA Ex-4 rapidly increased tyrosine hydroxylase levels within the VTA, suggesting that GLP-1R activation modulates VTA dopaminergic signaling. Further evidence for this hypothesis was provided by electrophysiological data showing that Ex-4 increased the frequency of AMPA-mediated currents and reduced the paired/pulse ratio in VTA dopamine neurons. Together, these data provide novel mechanisms by which GLP-1R agonists in the mesolimbic reward system control for palatable food intake.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

The common hepatic branch of the vagus is not required to mediate the glycemic and food intake suppressive effects of glucagon-like-peptide-1

Matthew R. Hayes; Scott E. Kanoski; Bart C. De Jonghe; Theresa M. Leichner; Amber L. Alhadeff; Samantha M. Fortin; Myrtha Arnold; Wolfgang Langhans; Harvey J. Grill

The incretin and food intake suppressive effects of intraperitoneally administered glucagon-like peptide-1 (GLP-1) involve activation of GLP-1 receptors (GLP-1R) expressed on vagal afferent fiber terminals. Central nervous system processing of GLP-1R-driven vagal afferents results in satiation signaling and enhanced insulin secretion from pancreatic-projecting vagal efferents. As the vast majority of endogenous GLP-1 is released from intestinal l-cells following ingestion, it stands to reason that paracrine GLP-1 signaling, activating adjacent GLP-1R expressed on vagal afferent fibers of gastrointestinal origin, contributes to glycemic and food intake control. However, systemic GLP-1R-mediated control of glycemia is currently attributed to endocrine action involving GLP-1R expressed in the hepatoportal bed on terminals of the common hepatic branch of the vagus (CHB). Here, we examine the hypothesis that activation of GLP-1R expressed on the CHB is not required for GLP-1s glycemic and intake suppressive effects, but rather paracrine signaling on non-CHB vagal afferents is required to mediate GLP-1s effects. Selective CHB ablation (CHBX), complete subdiaphragmatic vagal deafferentation (SDA), and surgical control rats received an oral glucose tolerance test (2.0 g glucose/kg) 10 min after an intraperitoneal injection of the GLP-1R antagonist, exendin-(9-39) (Ex-9; 0.5 mg/kg) or vehicle. CHBX and control rats showed comparable increases in blood glucose following blockade of GLP-1R by Ex-9, whereas SDA rats failed to show a GLP-1R-mediated incretin response. Furthermore, GLP-1(7-36) (0.5 mg/kg ip) produced a comparable suppression of 1-h 25% glucose intake in both CHBX and control rats, whereas intake suppression in SDA rats was blunted. These findings support the hypothesis that systemic GLP-1R mediation of glycemic control and food intake suppression involves paracrine-like signaling on GLP-1R expressed on vagal afferent fibers of gastrointestinal origin but does not require the CHB.

Collaboration


Dive into the Matthew R. Hayes's collaboration.

Top Co-Authors

Avatar

Scott E. Kanoski

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Harvey J. Grill

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Reiner

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Bart C. De Jonghe

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Lauren E. McGrath

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Diana R. Olivos

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Derek J. Zimmer

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Heath D. Schmidt

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Amber L. Alhadeff

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge