Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bart C. Weimer is active.

Publication


Featured researches published by Bart C. Weimer.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Comparative genomics of the lactic acid bacteria

Kira S. Makarova; A. Slesarev; Yuri I. Wolf; Alexander V. Sorokin; Boris Mirkin; Eugene V. Koonin; A. R. Pavlov; N. V. Pavlova; V. N. Karamychev; N. Polouchine; V. V. Shakhova; Igor V. Grigoriev; Y. Lou; D. Rohksar; Susan Lucas; K. Huang; David Goodstein; Trevor Hawkins; V. Plengvidhya; Dennis L. Welker; Joanne E. Hughes; Y. Goh; Andrew K. Benson; Kathleen A. Baldwin; Ju-Hoon Lee; I. Díaz-Muñiz; B. Dosti; V. Smeianov; W. Wechter; Ravi D. Barabote

Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.


Nature | 2013

Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens

Katharine Ng; Jessica A. Ferreyra; Steven K. Higginbottom; Jonathan B. Lynch; Purna C. Kashyap; Smita Gopinath; Natasha Naidu; Biswa Choudhury; Bart C. Weimer; Denise M. Monack; Justin L. Sonnenburg

The human intestine, colonized by a dense community of resident microbes, is a frequent target of bacterial pathogens. Undisturbed, this intestinal microbiota provides protection from bacterial infections. Conversely, disruption of the microbiota with oral antibiotics often precedes the emergence of several enteric pathogens. How pathogens capitalize upon the failure of microbiota-afforded protection is largely unknown. Here we show that two antibiotic-associated pathogens, Salmonella enterica serovar Typhimurium (S. typhimurium) and Clostridium difficile, use a common strategy of catabolizing microbiota-liberated mucosal carbohydrates during their expansion within the gut. S. typhimurium accesses fucose and sialic acid within the lumen of the gut in a microbiota-dependent manner, and genetic ablation of the respective catabolic pathways reduces its competitiveness in vivo. Similarly, C. difficile expansion is aided by microbiota-induced elevation of sialic acid levels in vivo. Colonization of gnotobiotic mice with a sialidase-deficient mutant of Bacteroides thetaiotaomicron, a model gut symbiont, reduces free sialic acid levels resulting in C. difficile downregulating its sialic acid catabolic pathway and exhibiting impaired expansion. These effects are reversed by exogenous dietary administration of free sialic acid. Furthermore, antibiotic treatment of conventional mice induces a spike in free sialic acid and mutants of both Salmonella and C. difficile that are unable to catabolize sialic acid exhibit impaired expansion. These data show that antibiotic-induced disruption of the resident microbiota and subsequent alteration in mucosal carbohydrate availability are exploited by these two distantly related enteric pathogens in a similar manner. This insight suggests new therapeutic approaches for preventing diseases caused by antibiotic-associated pathogens.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2002

Discovering lactic acid bacteria by genomics

Todd R. Klaenhammer; Eric Altermann; Fabrizio Arigoni; Alexander Bolotin; Fred Breidt; Jeffrey Broadbent; Raul J. Cano; Stephane Chaillou; Josef Deutscher; M. J. Gasson; Maarten van de Guchte; Jean Guzzo; Axel Hartke; Trevor Hawkins; Pascal Hols; Robert W. Hutkins; Michiel Kleerebezem; Jan Kok; Oscar P. Kuipers; Mark Lubbers; Emmanuelle Maguin; Larry L. McKay; David A. Mills; Arjen Nauta; Ross Overbeek; Herman Pel; David Pridmore; Milton H. Saier; Douwe van Sinderen; Alexei Sorokin

This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, nvironmental habitat, and its role in fermentation, bioprocessing, or probiotics. For those projects where genome sequence data were available by March 2002, summaries include a listing of key statistics and interesting genomic features. These efforts will revolutionize our molecular view of Gram–positive bacteria, as up to 15 genomes from the low GC content lactic acid bacteria are expected to be available in the public domain by the end of 2003. Our collective view of the lactic acid bacteria will be fundamentally changed as we rediscover the relationships and capabilities of these organisms through genomics.


Cell Host & Microbe | 2011

Bacteroides in the Infant Gut Consume Milk Oligosaccharides via Mucus-Utilization Pathways

Angela Marcobal; Mariana Barboza; Erica D. Sonnenburg; Nicholas A. Pudlo; Eric C. Martens; Prerak T. Desai; Carlito B. Lebrilla; Bart C. Weimer; David A. Mills; J. Bruce German; Justin L. Sonnenburg

Newborns are colonized with an intestinal microbiota shortly after birth, but the factors governing the retention and abundance of specific microbial lineages are unknown. Nursing infants consume human milk oligosaccharides (HMOs) that pass undigested to the distal gut, where they may be digested by microbes. We determined that the prominent neonate gut residents, Bacteroides thetaiotaomicron and Bacteroides fragilis, induce the same genes during HMO consumption that are used to harvest host mucus glycans, which are structurally similar to HMOs. Lacto-N-neotetraose, a specific HMO component, selects for HMO-adapted species such as Bifidobacterium infantis, which cannot use mucus, and provides a selective advantage to B. infantis in vivo when biassociated with B. thetaiotaomicron in the gnotobiotic mouse gut. This indicates that the complex oligosaccharide mixture within HMOs attracts both mutualistic mucus-adapted species and HMO-adapted bifidobacteria to the infant intestine that likely facilitate both milk and future solid food digestion.


Nature Chemical Biology | 2008

Cytosporone B is an agonist for nuclear orphan receptor Nur77

Yan-yan Zhan; Xiping Du; Hang-zi Chen; Jingjing Liu; Bi-xing Zhao; Danhong Huang; Gui-deng Li; Qingyan Xu; Mingqing Zhang; Bart C. Weimer; Dong Chen; Zhe Cheng; Lianru Zhang; Qinxi Li; Shaowei Li; Zhonghui Zheng; Siyang Song; Yaojian Huang; Zhiyun Ye; Wenjin Su; Sheng-Cai Lin; Yuemao Shen; Qiao Wu

Nuclear orphan receptor Nur77 has important roles in many biological processes. However, a physiological ligand for Nur77 has not been identified. Here, we report that the octaketide cytosporone B (Csn-B) is a naturally occurring agonist for Nur77. Csn-B specifically binds to the ligand-binding domain of Nur77 and stimulates Nur77-dependent transactivational activity towards target genes including Nr4a1 (Nur77) itself, which contains multiple consensus response elements allowing positive autoregulation in a Csn-B-dependent manner. Csn-B also elevates blood glucose levels in fasting C57 mice, an effect that is accompanied by induction of multiple genes involved in gluconeogenesis. These biological effects were not observed in Nur77-null (Nr4a1-/-) mice, which indicates that Csn-B regulates gluconeogenesis through Nur77. Moreover, Csn-B induced apoptosis and retarded xenograft tumor growth by inducing Nur77 expression, translocating Nur77 to mitochondria to cause cytochrome c release. Thus, Csn-B may represent a promising therapeutic drug for cancers and hypoglycemia, and it may also be useful as a reagent to increase understanding of Nur77 biological function.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 1999

SULFUR METABOLISM IN BACTERIA ASSOCIATED WITH CHEESE

Bart C. Weimer; Kimberly Seefeldt; Benjamin Dias

Metabolism of sulfur in bacteria associated with cheese has long been a topic of interest. Volatile sulfur compounds, specifically methanethiol, are correlated to desirable flavor in Cheddar cheese, but their definitive role remains elusive. Only recently have enzymes been found that produce this compound in bacteria associated with cheese making. Cystathionine β- and γ-lyase are found in lactic acid bacteria and are capable of producing methanethiol from methionine. Their primary function is in the metabolism of cysteine. Methionine γ-lyase produces methanethiol from methionine at a higher efficiency than the cystathionine enzymes. This enzyme is found in brevibacteria, bacilli, and pseudomonads. Addition of brevibacteria containing this enzyme improves Cheddar cheese flavor. Despite recent progress in sulfur metabolism more information is needed before cheese flavor associated with sulfur can be predicted or controlled.


Cardiovascular Research | 2010

Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure

Heiko Bugger; Michael Schwarzer; Dong Chen; Andrea Schrepper; Paulo A. Amorim; Maria Schoepe; T. Dung Nguyen; Friedrich W. Mohr; Oleh Khalimonchuk; Bart C. Weimer; Torsten Doenst

AIMS Impairment in mitochondrial energetics is a common observation in animal models of heart failure, the underlying mechanisms of which remain incompletely understood. It was our objective to investigate whether changes in mitochondrial protein levels may explain impairment in mitochondrial oxidative capacity in pressure overload-induced heart failure. METHODS AND RESULTS Twenty weeks following aortic constriction, Sprague-Dawley rats developed contractile dysfunction with clinical signs of heart failure. Comparative mitochondrial proteomics using label-free proteome expression analysis (LC-MS/MS) revealed decreased mitochondrial abundance of fatty acid oxidation proteins (six of 11 proteins detected), increased levels of pyruvate dehydrogenase subunits, and upregulation of two tricarboxylic acid cycle proteins. Regulation of mitochondrial electron transport chain subunits was variable, with downregulation of 53% of proteins and upregulation of 25% of proteins. Mitochondrial state 3 respiration was markedly decreased independent of the substrate used (palmitoyl-carnitine -65%, pyruvate -75%, glutamate -75%, dinitrophenol -82%; all P < 0.05), associated with impaired mitochondrial cristae morphology in failing hearts. Perfusion of isolated working failing hearts showed markedly reduced oleate (-68%; P < 0.05) and glucose oxidation (-64%; P < 0.05). CONCLUSION Pressure overload-induced heart failure is characterized by a substantial defect in cardiac oxidative capacity, at least in part due to a mitochondrial defect downstream of substrate-specific pathways. Numerous changes in mitochondrial protein levels have been detected, and the contribution of these to oxidative defects and impaired cardiac energetics in failing hearts is discussed.


Diabetes | 2009

Tissue-Specific Remodeling of the Mitochondrial Proteome in Type 1 Diabetic Akita Mice

Heiko Bugger; Dong Chen; Christian Riehle; Jamie Soto; Heather Theobald; Xiao Xuan Hu; Balasubramanian Ganesan; Bart C. Weimer; E. Dale Abel

OBJECTIVE To elucidate the molecular basis for mitochondrial dysfunction, which has been implicated in the pathogenesis of diabetes complications. RESEARCH DESIGN AND METHODS Mitochondrial matrix and membrane fractions were generated from liver, brain, heart, and kidney of wild-type and type 1 diabetic Akita mice. Comparative proteomics was performed using label-free proteome expression analysis. Mitochondrial state 3 respirations and ATP synthesis were measured, and mitochondrial morphology was evaluated by electron microscopy. Expression of genes that regulate mitochondrial biogenesis, substrate utilization, and oxidative phosphorylation (OXPHOS) were determined. RESULTS In diabetic mice, fatty acid oxidation (FAO) proteins were less abundant in liver mitochondria, whereas FAO protein content was induced in mitochondria from all other tissues. Kidney mitochondria showed coordinate induction of tricarboxylic acid (TCA) cycle enzymes, whereas TCA cycle proteins were repressed in cardiac mitochondria. Levels of OXPHOS subunits were coordinately increased in liver mitochondria, whereas mitochondria of other tissues were unaffected. Mitochondrial respiration, ATP synthesis, and morphology were unaffected in liver and kidney mitochondria. In contrast, state 3 respirations, ATP synthesis, and mitochondrial cristae density were decreased in cardiac mitochondria and were accompanied by coordinate repression of OXPHOS and peroxisome proliferator–activated receptor (PPAR)-γ coactivator (PGC)-1α transcripts. CONCLUSIONS Type 1 diabetes causes tissue-specific remodeling of the mitochondrial proteome. Preservation of mitochondrial function in kidney, brain, and liver, versus mitochondrial dysfunction in the heart, supports a central role for mitochondrial dysfunction in diabetic cardiomyopathy.


Applied and Environmental Microbiology | 2010

Broad Conservation of Milk Utilization Genes in Bifidobacterium longum subsp. infantis as Revealed by Comparative Genomic Hybridization

Riccardo G. LoCascio; Prerak T. Desai; David A. Sela; Bart C. Weimer; David A. Mills

ABSTRACT Human milk oligosaccharides (HMOs) are the third-largest solid component of milk. Their structural complexity renders them nondigestible to the host but liable to hydrolytic enzymes of the infant colonic microbiota. Bifidobacteria and, frequently, Bifidobacterium longum strains predominate the colonic microbiota of exclusively breast-fed infants. Among the three recognized subspecies of B. longum, B. longum subsp. infantis achieves high levels of cell growth on HMOs and is associated with early colonization of the infant gut. The B. longum subsp. infantis ATCC 15697 genome features five distinct gene clusters with the predicted capacity to bind, cleave, and import milk oligosaccharides. Comparative genomic hybridizations (CGHs) were used to associate genotypic biomarkers among 15 B. longum strains exhibiting various HMO utilization phenotypes and host associations. Multilocus sequence typing provided taxonomic subspecies designations and grouped the strains between B. longum subsp. infantis and B. longum subsp. longum. CGH analysis determined that HMO utilization gene regions are exclusively conserved across all B. longum subsp. infantis strains capable of growth on HMOs and have diverged in B. longum subsp. longum strains that cannot grow on HMOs. These regions contain fucosidases, sialidases, glycosyl hydrolases, ABC transporters, and family 1 solute binding proteins and are likely needed for efficient metabolism of HMOs. Urea metabolism genes and their activity were exclusively conserved in B. longum subsp. infantis. These results imply that the B. longum has at least two distinct subspecies: B. longum subsp. infantis, specialized to utilize milk carbon, and B. longum subsp. longum, specialized for plant-derived carbon metabolism.


Applied and Environmental Microbiology | 2004

DNA Macroarray Profiling of Lactococcus lactis subsp. lactis IL1403 Gene Expression during Environmental Stresses

Yi Xie; Lan-Szu Chou; Adele Cutler; Bart C. Weimer

ABSTRACT This report describes the use of an oligonucleotide macroarray to profile the expression of 375 genes in Lactococcus lactis subsp. lactis IL1403 during heat, acid, and osmotic stress. A set of known stress-associated genes in IL1403 was used as the internal control on the array. Every stress response was accurately detected using the macroarray, compared to data from previous reports. As a group, the expression patterns of the investigated metabolic genes were significantly altered by heat, acid, and osmotic stresses. Specifically, 13 to 18% of the investigated genes were differentially expressed in each of the environmental stress treatments. Interestingly, the methionine biosynthesis pathway genes (metA-metB1 and metB2-cysK) were induced during heat shock, but methionine utilization genes, such as metK, were induced during acid stress. These data provide a possible explanation for the differences between acid tolerance mechanisms of L. lactis strains IL1403 and MG1363 reported previously. Several groups of transcriptional responses were common among the stress treatments, such as repression of peptide transporter genes, including the opt operon (also known as dpp) and dtpT. Reduction of peptide transport due to environmental stress will have important implications in the cheese ripening process. Although stress responses in lactococci were extensively studied during the last decade, additional information about this bacterium was gained from the use of this metabolic array.

Collaboration


Dive into the Bart C. Weimer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Chen

Utah State University

View shared research outputs
Top Co-Authors

Avatar

Nguyet Kong

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bihua C. Huang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Narine Arabyan

University of California

View shared research outputs
Top Co-Authors

Avatar

James L. Steele

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Poyin Chen

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge